Wafa Kammouni, Gayatri Ramakrishna, Gunamani Sithanandam, George T Smith, Laura W Fornwald, Akira Masuda, Takashi Takahashi, Lucy M Anderson
{"title":"小鼠和人肺上皮细胞融合后K-ras蛋白和活性增加。","authors":"Wafa Kammouni, Gayatri Ramakrishna, Gunamani Sithanandam, George T Smith, Laura W Fornwald, Akira Masuda, Takashi Takahashi, Lucy M Anderson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Although K-ras is frequently mutated in lung adenocarcinomas, the normal function of K-ras p21 in lung is not known. In two mouse (E10 and C10) and one human (HPL1D) immortalized lung cell lines from peripheral epithelium, we have measured total K-ras p21 and active K-ras p21-GTP during cell proliferation and at growth arrest caused by confluence. In all three cell types, total K-ras p21 increased 2- to 4-fold at confluence, and active K-ras p21-GTP increased 10- to 200-fold. It was estimated that 0.03% of total K-ras p21 was in the active GTP-bound state at 50% confluence, compared with 1.4% at postconfluence. By contrast, stimulation of proliferation by serum-containing medium did not involve K-ras p21 activation, even though a rapid, marked activation of both Erk1/2 and Akt occurred. At confluence, large increases, up to 14-fold, were seen in Grb2/Sos1 complexes, which may activate K-ras p21. In sum, increased protein expression and activity of K-ras p21 are associated with growth arrest, not with proliferation, in mouse and human lung cell lines.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"13 9","pages":"441-8"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased K-ras protein and activity in mouse and human lung epithelial cells at confluence.\",\"authors\":\"Wafa Kammouni, Gayatri Ramakrishna, Gunamani Sithanandam, George T Smith, Laura W Fornwald, Akira Masuda, Takashi Takahashi, Lucy M Anderson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although K-ras is frequently mutated in lung adenocarcinomas, the normal function of K-ras p21 in lung is not known. In two mouse (E10 and C10) and one human (HPL1D) immortalized lung cell lines from peripheral epithelium, we have measured total K-ras p21 and active K-ras p21-GTP during cell proliferation and at growth arrest caused by confluence. In all three cell types, total K-ras p21 increased 2- to 4-fold at confluence, and active K-ras p21-GTP increased 10- to 200-fold. It was estimated that 0.03% of total K-ras p21 was in the active GTP-bound state at 50% confluence, compared with 1.4% at postconfluence. By contrast, stimulation of proliferation by serum-containing medium did not involve K-ras p21 activation, even though a rapid, marked activation of both Erk1/2 and Akt occurred. At confluence, large increases, up to 14-fold, were seen in Grb2/Sos1 complexes, which may activate K-ras p21. In sum, increased protein expression and activity of K-ras p21 are associated with growth arrest, not with proliferation, in mouse and human lung cell lines.</p>\",\"PeriodicalId\":9753,\"journal\":{\"name\":\"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research\",\"volume\":\"13 9\",\"pages\":\"441-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Increased K-ras protein and activity in mouse and human lung epithelial cells at confluence.
Although K-ras is frequently mutated in lung adenocarcinomas, the normal function of K-ras p21 in lung is not known. In two mouse (E10 and C10) and one human (HPL1D) immortalized lung cell lines from peripheral epithelium, we have measured total K-ras p21 and active K-ras p21-GTP during cell proliferation and at growth arrest caused by confluence. In all three cell types, total K-ras p21 increased 2- to 4-fold at confluence, and active K-ras p21-GTP increased 10- to 200-fold. It was estimated that 0.03% of total K-ras p21 was in the active GTP-bound state at 50% confluence, compared with 1.4% at postconfluence. By contrast, stimulation of proliferation by serum-containing medium did not involve K-ras p21 activation, even though a rapid, marked activation of both Erk1/2 and Akt occurred. At confluence, large increases, up to 14-fold, were seen in Grb2/Sos1 complexes, which may activate K-ras p21. In sum, increased protein expression and activity of K-ras p21 are associated with growth arrest, not with proliferation, in mouse and human lung cell lines.