{"title":"主成分因子分析法对人Xa因子抑制剂n2 -芳酰氰胺类药物的QSAR研究。","authors":"Kunal Roy, A U De, Chandana Sengupta","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative structure-activity relationship (QSAR) study of human factor Xa inhibitor N2-aroylanthranilamides, recently reported by Yee et al. (J. Med. Chem., 43, 873-882), has been performed using principal component factor analysis as the preprocessing step. The study reveals that presence of electron-donating R2 substituent at the para position (with respect to the amide linkage) is conducive to the binding affinity, whereas a meta R2 substituent decreases the affinity. Again, electron-donating R1 substituents with less bulk and optimum hydrophilic-lipophilic balance (particularly, methyl and methoxy groups) favor the activity. The study further suggests that electron-withdrawing R3 substituents are detrimental for the activity, whereas bulkier R4 substituents (particularly NHSO2Me group) increase the activity.</p>","PeriodicalId":11297,"journal":{"name":"Drug design and discovery","volume":"18 1","pages":"23-31"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QSAR of human factor Xa inhibitor N2-aroylanthranilamides using principal component factor analysis.\",\"authors\":\"Kunal Roy, A U De, Chandana Sengupta\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative structure-activity relationship (QSAR) study of human factor Xa inhibitor N2-aroylanthranilamides, recently reported by Yee et al. (J. Med. Chem., 43, 873-882), has been performed using principal component factor analysis as the preprocessing step. The study reveals that presence of electron-donating R2 substituent at the para position (with respect to the amide linkage) is conducive to the binding affinity, whereas a meta R2 substituent decreases the affinity. Again, electron-donating R1 substituents with less bulk and optimum hydrophilic-lipophilic balance (particularly, methyl and methoxy groups) favor the activity. The study further suggests that electron-withdrawing R3 substituents are detrimental for the activity, whereas bulkier R4 substituents (particularly NHSO2Me group) increase the activity.</p>\",\"PeriodicalId\":11297,\"journal\":{\"name\":\"Drug design and discovery\",\"volume\":\"18 1\",\"pages\":\"23-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug design and discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug design and discovery","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
QSAR of human factor Xa inhibitor N2-aroylanthranilamides using principal component factor analysis.
Quantitative structure-activity relationship (QSAR) study of human factor Xa inhibitor N2-aroylanthranilamides, recently reported by Yee et al. (J. Med. Chem., 43, 873-882), has been performed using principal component factor analysis as the preprocessing step. The study reveals that presence of electron-donating R2 substituent at the para position (with respect to the amide linkage) is conducive to the binding affinity, whereas a meta R2 substituent decreases the affinity. Again, electron-donating R1 substituents with less bulk and optimum hydrophilic-lipophilic balance (particularly, methyl and methoxy groups) favor the activity. The study further suggests that electron-withdrawing R3 substituents are detrimental for the activity, whereas bulkier R4 substituents (particularly NHSO2Me group) increase the activity.