Marlene L Cohen, Elizabeth J Galbreath, Kathryn W Schenck, Danqing Li, Beth J Hoffman, Anindya Bhattacharya
{"title":"素马匹坦缺乏诱导的主动脉收缩或舒张:血管内皮和血管平滑肌中检测到5-HT1B受体蛋白,但主动脉中未检测到。","authors":"Marlene L Cohen, Elizabeth J Galbreath, Kathryn W Schenck, Danqing Li, Beth J Hoffman, Anindya Bhattacharya","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Since 5-HT1B receptor mRNA was reported in rat aorta, and 5-HT1B receptor activation has been linked to vascular contraction, we explored sumatriptan-induced contractility and immunohistochemical density of 5-HT1B receptor protein in rat aorta. Sumatriptan (up to 10(-4) M), a 5-HT1B/1D receptor agonist, did not contract the endothelial intact or denuded rat aorta, even in the presence of L-NAME or after induction of modest tone with PGF2 alpha (10(-6) M). Sumatriptan also did not relax aortic preparations precontract with PGF2 alpha (3 x 10(-6) M) or phenylephrine (3 x 10(-7) M). Using a polyclonal antibody directed against the 5-HT1B receptor, minimal 5-HT1B receptor protein was detected in either the endothelium or smooth muscle of the rat aorta. However, dense 5-HT1B receptor protein was found in the vascular smooth muscle of the vasa vasorum supplying the aorta. Thus, the 5-HT1B receptor mRNA detected in tissue extracts of the rat aorta most likely reflects 5-HT1B receptor expression in the arterioles of the vasa vasorum. These studies support the link between the 5-HT1B receptor and vascular contraction in that the aorta with low density of 5-HT1B receptors lacked responses to sumatriptan, an agonist thought to contract blood vessels via 5-HT1B/1D receptors. Furthermore, caution must be observed when using 5-HT1B receptor mRNA to suggest receptor protein in tissues since this RT-PCR product may be derived predominantly from small blood vessels.</p>","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"8 2","pages":"71-8"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lack of sumatriptan-induced aortic contraction or relaxation: 5-HT1B receptor protein detected in endothelium and smooth muscle of vasa vasorum but not aorta.\",\"authors\":\"Marlene L Cohen, Elizabeth J Galbreath, Kathryn W Schenck, Danqing Li, Beth J Hoffman, Anindya Bhattacharya\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since 5-HT1B receptor mRNA was reported in rat aorta, and 5-HT1B receptor activation has been linked to vascular contraction, we explored sumatriptan-induced contractility and immunohistochemical density of 5-HT1B receptor protein in rat aorta. Sumatriptan (up to 10(-4) M), a 5-HT1B/1D receptor agonist, did not contract the endothelial intact or denuded rat aorta, even in the presence of L-NAME or after induction of modest tone with PGF2 alpha (10(-6) M). Sumatriptan also did not relax aortic preparations precontract with PGF2 alpha (3 x 10(-6) M) or phenylephrine (3 x 10(-7) M). Using a polyclonal antibody directed against the 5-HT1B receptor, minimal 5-HT1B receptor protein was detected in either the endothelium or smooth muscle of the rat aorta. However, dense 5-HT1B receptor protein was found in the vascular smooth muscle of the vasa vasorum supplying the aorta. Thus, the 5-HT1B receptor mRNA detected in tissue extracts of the rat aorta most likely reflects 5-HT1B receptor expression in the arterioles of the vasa vasorum. These studies support the link between the 5-HT1B receptor and vascular contraction in that the aorta with low density of 5-HT1B receptors lacked responses to sumatriptan, an agonist thought to contract blood vessels via 5-HT1B/1D receptors. Furthermore, caution must be observed when using 5-HT1B receptor mRNA to suggest receptor protein in tissues since this RT-PCR product may be derived predominantly from small blood vessels.</p>\",\"PeriodicalId\":20928,\"journal\":{\"name\":\"Receptors & channels\",\"volume\":\"8 2\",\"pages\":\"71-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Receptors & channels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors & channels","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lack of sumatriptan-induced aortic contraction or relaxation: 5-HT1B receptor protein detected in endothelium and smooth muscle of vasa vasorum but not aorta.
Since 5-HT1B receptor mRNA was reported in rat aorta, and 5-HT1B receptor activation has been linked to vascular contraction, we explored sumatriptan-induced contractility and immunohistochemical density of 5-HT1B receptor protein in rat aorta. Sumatriptan (up to 10(-4) M), a 5-HT1B/1D receptor agonist, did not contract the endothelial intact or denuded rat aorta, even in the presence of L-NAME or after induction of modest tone with PGF2 alpha (10(-6) M). Sumatriptan also did not relax aortic preparations precontract with PGF2 alpha (3 x 10(-6) M) or phenylephrine (3 x 10(-7) M). Using a polyclonal antibody directed against the 5-HT1B receptor, minimal 5-HT1B receptor protein was detected in either the endothelium or smooth muscle of the rat aorta. However, dense 5-HT1B receptor protein was found in the vascular smooth muscle of the vasa vasorum supplying the aorta. Thus, the 5-HT1B receptor mRNA detected in tissue extracts of the rat aorta most likely reflects 5-HT1B receptor expression in the arterioles of the vasa vasorum. These studies support the link between the 5-HT1B receptor and vascular contraction in that the aorta with low density of 5-HT1B receptors lacked responses to sumatriptan, an agonist thought to contract blood vessels via 5-HT1B/1D receptors. Furthermore, caution must be observed when using 5-HT1B receptor mRNA to suggest receptor protein in tissues since this RT-PCR product may be derived predominantly from small blood vessels.