体外和体内生物膜:单一机制是否意味着交叉抗性?

P Gilbert, D G Allison, A J McBain
{"title":"体外和体内生物膜:单一机制是否意味着交叉抗性?","authors":"P Gilbert,&nbsp;D G Allison,&nbsp;A J McBain","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial biofilm has become inexorably linked with man's failure to control them by antibiotic and biocide regimes that are effective against suspended bacteria. This failure relates to a localized concentration of biofilm bacteria, and their extracellular products (exopolymers and extracellular enzymes), that moderates the access of the treatment agent and starves the more deeply placed cells. Biofilms, therefore, typically present gradients of physiology and concentration for the imposed treatment agent, which enables the less susceptible clones to survive. Such clones might include efflux mutants in addition to genotypes with modifications in single gene products. Clonal expansion following subeffective treatment would, in the case of many antibiotics, lead to the emergence of a resistant population. This tends not to occur for biocidal treatments where the active agent exhibits multiple pharmacological activity towards a number of specific cellular targets. Whilst resistance development towards biocidal agents is highly unlikely, subeffective exposure will lead to the selection of less susceptible clones, modified either in efflux or in their most susceptible target. The latter might also confer resistance to antibiotics where the target is shared. Thus, recent reports have demonstrated that sublethal concentrations of the antibacterial and antifungal agent triclosan can select for resistant mutants in Escherichia coli and that this agent specifically targets the enzyme enoyl reductase that is involved in lipid biosynthesis. Triclosan may, therefore, select for mutants in a target that is shared with the anti-E. coli diazaborine compounds and the antituberculosis drug isoniazid. Although triclosan may be a uniquely specific biocide, sublethal concentrations of less specific antimicrobial agents may also select for mutations within their most sensitive targets, some of which might be common to therapeutic agents. Sublethal treatment with chemical antimicrobial agents has also been demonstrated to induce the expression of multidrug efflux pumps and efflux mutants. Whilst efflux does not confer protection against use concentrations of biocidal products it is sufficient to confer protection against therapeutic doses of many antibiotics. It has, therefore, been widely speculated that biocide misuse may have an insidious effect, contributing to the evolution and persistence of drug resistance within microbial communities. Whilst such notions are supported by laboratory studies that utilize pure cultures, recent evidence has strongly refuted such linkage within the general environment where complex, multispecies biofilms predominate and where biocidal products are routinely deployed. In such situations the competition, for nutrients and space, between community members of disparate sensitivities far outweighs any potential benefits bestowed by the changes in an individual's antimicrobial susceptibility.</p>","PeriodicalId":79733,"journal":{"name":"Symposium series (Society for Applied Microbiology)","volume":" 31","pages":"98S-110S"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance?\",\"authors\":\"P Gilbert,&nbsp;D G Allison,&nbsp;A J McBain\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial biofilm has become inexorably linked with man's failure to control them by antibiotic and biocide regimes that are effective against suspended bacteria. This failure relates to a localized concentration of biofilm bacteria, and their extracellular products (exopolymers and extracellular enzymes), that moderates the access of the treatment agent and starves the more deeply placed cells. Biofilms, therefore, typically present gradients of physiology and concentration for the imposed treatment agent, which enables the less susceptible clones to survive. Such clones might include efflux mutants in addition to genotypes with modifications in single gene products. Clonal expansion following subeffective treatment would, in the case of many antibiotics, lead to the emergence of a resistant population. This tends not to occur for biocidal treatments where the active agent exhibits multiple pharmacological activity towards a number of specific cellular targets. Whilst resistance development towards biocidal agents is highly unlikely, subeffective exposure will lead to the selection of less susceptible clones, modified either in efflux or in their most susceptible target. The latter might also confer resistance to antibiotics where the target is shared. Thus, recent reports have demonstrated that sublethal concentrations of the antibacterial and antifungal agent triclosan can select for resistant mutants in Escherichia coli and that this agent specifically targets the enzyme enoyl reductase that is involved in lipid biosynthesis. Triclosan may, therefore, select for mutants in a target that is shared with the anti-E. coli diazaborine compounds and the antituberculosis drug isoniazid. Although triclosan may be a uniquely specific biocide, sublethal concentrations of less specific antimicrobial agents may also select for mutations within their most sensitive targets, some of which might be common to therapeutic agents. Sublethal treatment with chemical antimicrobial agents has also been demonstrated to induce the expression of multidrug efflux pumps and efflux mutants. Whilst efflux does not confer protection against use concentrations of biocidal products it is sufficient to confer protection against therapeutic doses of many antibiotics. It has, therefore, been widely speculated that biocide misuse may have an insidious effect, contributing to the evolution and persistence of drug resistance within microbial communities. Whilst such notions are supported by laboratory studies that utilize pure cultures, recent evidence has strongly refuted such linkage within the general environment where complex, multispecies biofilms predominate and where biocidal products are routinely deployed. In such situations the competition, for nutrients and space, between community members of disparate sensitivities far outweighs any potential benefits bestowed by the changes in an individual's antimicrobial susceptibility.</p>\",\"PeriodicalId\":79733,\"journal\":{\"name\":\"Symposium series (Society for Applied Microbiology)\",\"volume\":\" 31\",\"pages\":\"98S-110S\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium series (Society for Applied Microbiology)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium series (Society for Applied Microbiology)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微生物生物膜与人类无法用抗生素和杀菌剂对悬浮细菌有效的控制它们有着不可分割的联系。这种失败与生物膜细菌及其胞外产物(外聚合物和胞外酶)的局部浓度有关,这些产物抑制了处理剂的进入,使更深层的细胞挨饿。因此,生物膜通常呈现生理梯度和施加的处理剂浓度,这使得不太敏感的克隆能够生存。这种克隆可能包括外排突变体以及单基因产物修饰的基因型。在许多抗生素的情况下,无效治疗后的克隆扩增将导致耐药群体的出现。这种情况往往不会发生在生物杀灭剂治疗中,其中活性剂对许多特定细胞靶标表现出多种药理活性。虽然对杀菌剂产生耐药性的可能性很小,但次有效暴露将导致选择不太敏感的克隆,在外排或最敏感的目标中进行修饰。后者也可能在共享靶标的情况下产生对抗生素的耐药性。因此,最近的报告表明,亚致死浓度的抗菌和抗真菌药物三氯生可以在大肠杆菌中选择耐药突变体,并且该药物专门针对参与脂质生物合成的烯酰还原酶。因此,三氯生可以在与抗- e共享的靶标中选择突变体。大肠杆菌重氮aborine化合物和抗结核药物异烟肼。虽然三氯生可能是一种独特的特异性杀菌剂,但特异性较低的亚致死浓度抗菌剂也可能在其最敏感的靶标中选择突变,其中一些突变可能是治疗剂常见的。化学抗菌剂的亚致死处理也被证明可以诱导多药物外排泵和外排突变体的表达。虽然外排不能对使用浓度的杀菌剂产品提供保护,但足以对许多抗生素的治疗剂量提供保护。因此,人们普遍推测,误用杀菌剂可能具有潜在的影响,有助于微生物群落中耐药性的进化和持续存在。虽然这些观点得到了利用纯培养物的实验室研究的支持,但最近的证据强烈驳斥了在复杂的多物种生物膜占主导地位以及常规使用生物杀灭剂产品的一般环境中这种联系。在这种情况下,具有不同敏感性的群体成员之间对营养物质和空间的竞争,远远超过了个体抗菌素敏感性变化所带来的任何潜在好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance?

Microbial biofilm has become inexorably linked with man's failure to control them by antibiotic and biocide regimes that are effective against suspended bacteria. This failure relates to a localized concentration of biofilm bacteria, and their extracellular products (exopolymers and extracellular enzymes), that moderates the access of the treatment agent and starves the more deeply placed cells. Biofilms, therefore, typically present gradients of physiology and concentration for the imposed treatment agent, which enables the less susceptible clones to survive. Such clones might include efflux mutants in addition to genotypes with modifications in single gene products. Clonal expansion following subeffective treatment would, in the case of many antibiotics, lead to the emergence of a resistant population. This tends not to occur for biocidal treatments where the active agent exhibits multiple pharmacological activity towards a number of specific cellular targets. Whilst resistance development towards biocidal agents is highly unlikely, subeffective exposure will lead to the selection of less susceptible clones, modified either in efflux or in their most susceptible target. The latter might also confer resistance to antibiotics where the target is shared. Thus, recent reports have demonstrated that sublethal concentrations of the antibacterial and antifungal agent triclosan can select for resistant mutants in Escherichia coli and that this agent specifically targets the enzyme enoyl reductase that is involved in lipid biosynthesis. Triclosan may, therefore, select for mutants in a target that is shared with the anti-E. coli diazaborine compounds and the antituberculosis drug isoniazid. Although triclosan may be a uniquely specific biocide, sublethal concentrations of less specific antimicrobial agents may also select for mutations within their most sensitive targets, some of which might be common to therapeutic agents. Sublethal treatment with chemical antimicrobial agents has also been demonstrated to induce the expression of multidrug efflux pumps and efflux mutants. Whilst efflux does not confer protection against use concentrations of biocidal products it is sufficient to confer protection against therapeutic doses of many antibiotics. It has, therefore, been widely speculated that biocide misuse may have an insidious effect, contributing to the evolution and persistence of drug resistance within microbial communities. Whilst such notions are supported by laboratory studies that utilize pure cultures, recent evidence has strongly refuted such linkage within the general environment where complex, multispecies biofilms predominate and where biocidal products are routinely deployed. In such situations the competition, for nutrients and space, between community members of disparate sensitivities far outweighs any potential benefits bestowed by the changes in an individual's antimicrobial susceptibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? Biocide use in the food industry and the disinfectant resistance of persistent strains of Listeria monocytogenes and Escherichia coli. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. Quantitative assessment of risk reduction from hand washing with antibacterial soaps. Significance of biocide usage and antimicrobial resistance in domiciliary environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1