{"title":"VIP和PACAP的VPAC受体。","authors":"M Laburthe, A Couvineau, J C Marie","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>VIP and PACAP are two prominent neuropeptides that share two common G protein-coupled receptors, VPAC1 and VPAC2, while PACAP has an additional specific receptor, PAC1. This article reviews the present knowledge regarding various aspects of VPAC receptors including: 1) receptor specificity toward natural VIP-related peptides and pharmacology of synthetic agonists or antagonists; 2) genomic organization and chromosomal localization; 3) signaling and established or putative interactions with G proteins or accessory proteins such as RAMPs or PDZ-containing proteins; 4) molecular basis of ligand-receptor interaction as determined by site-directed mutagenesis, construction of receptor chimeras, and structural modeling; 5) constitutively active receptor mutants; 6) short-term (desensitization, internalization, phosphorylation) and long-term (transcription) regulations and transgenic models; 7) receptor polymorphisms.</p>","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VPAC receptors for VIP and PACAP.\",\"authors\":\"M Laburthe, A Couvineau, J C Marie\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>VIP and PACAP are two prominent neuropeptides that share two common G protein-coupled receptors, VPAC1 and VPAC2, while PACAP has an additional specific receptor, PAC1. This article reviews the present knowledge regarding various aspects of VPAC receptors including: 1) receptor specificity toward natural VIP-related peptides and pharmacology of synthetic agonists or antagonists; 2) genomic organization and chromosomal localization; 3) signaling and established or putative interactions with G proteins or accessory proteins such as RAMPs or PDZ-containing proteins; 4) molecular basis of ligand-receptor interaction as determined by site-directed mutagenesis, construction of receptor chimeras, and structural modeling; 5) constitutively active receptor mutants; 6) short-term (desensitization, internalization, phosphorylation) and long-term (transcription) regulations and transgenic models; 7) receptor polymorphisms.</p>\",\"PeriodicalId\":20928,\"journal\":{\"name\":\"Receptors & channels\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Receptors & channels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors & channels","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VIP and PACAP are two prominent neuropeptides that share two common G protein-coupled receptors, VPAC1 and VPAC2, while PACAP has an additional specific receptor, PAC1. This article reviews the present knowledge regarding various aspects of VPAC receptors including: 1) receptor specificity toward natural VIP-related peptides and pharmacology of synthetic agonists or antagonists; 2) genomic organization and chromosomal localization; 3) signaling and established or putative interactions with G proteins or accessory proteins such as RAMPs or PDZ-containing proteins; 4) molecular basis of ligand-receptor interaction as determined by site-directed mutagenesis, construction of receptor chimeras, and structural modeling; 5) constitutively active receptor mutants; 6) short-term (desensitization, internalization, phosphorylation) and long-term (transcription) regulations and transgenic models; 7) receptor polymorphisms.