{"title":"天门冬氨酸基交联单体的研制及应用。","authors":"D A Spivak, M Sibrian-Vazquez","doi":"10.1023/a:1021597921318","DOIUrl":null,"url":null,"abstract":"<p><p>Improved specificity and binding affinity by molecularly imprinted polymers is possible by development of novel functional materials. Furthermore, increasing the cross-link density of imprinted polymers by using cross-linking functional groups was anticipated to improve polymer molecular recognition. A novel cross-linking monomer derived from an L-aspartic acid precursor was synthesized and employed in molecularly imprinted polymers to mimic more closely the scaffolding of proteins, and thus provide more protein-like selectivity. Chromatographic results revealed a more than 7-fold improvement in polymers imprinted using the new monomer versus a traditionally formulated polymer imprinted with methacrylic acid as the functional monomer.</p>","PeriodicalId":9179,"journal":{"name":"Bioseparation","volume":"10 6","pages":"331-6"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1023/a:1021597921318","citationCount":"8","resultStr":"{\"title\":\"Development of an aspartic acid-based cross-linking monomer for improved bioseparations.\",\"authors\":\"D A Spivak, M Sibrian-Vazquez\",\"doi\":\"10.1023/a:1021597921318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Improved specificity and binding affinity by molecularly imprinted polymers is possible by development of novel functional materials. Furthermore, increasing the cross-link density of imprinted polymers by using cross-linking functional groups was anticipated to improve polymer molecular recognition. A novel cross-linking monomer derived from an L-aspartic acid precursor was synthesized and employed in molecularly imprinted polymers to mimic more closely the scaffolding of proteins, and thus provide more protein-like selectivity. Chromatographic results revealed a more than 7-fold improvement in polymers imprinted using the new monomer versus a traditionally formulated polymer imprinted with methacrylic acid as the functional monomer.</p>\",\"PeriodicalId\":9179,\"journal\":{\"name\":\"Bioseparation\",\"volume\":\"10 6\",\"pages\":\"331-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1023/a:1021597921318\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioseparation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1023/a:1021597921318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioseparation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1023/a:1021597921318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of an aspartic acid-based cross-linking monomer for improved bioseparations.
Improved specificity and binding affinity by molecularly imprinted polymers is possible by development of novel functional materials. Furthermore, increasing the cross-link density of imprinted polymers by using cross-linking functional groups was anticipated to improve polymer molecular recognition. A novel cross-linking monomer derived from an L-aspartic acid precursor was synthesized and employed in molecularly imprinted polymers to mimic more closely the scaffolding of proteins, and thus provide more protein-like selectivity. Chromatographic results revealed a more than 7-fold improvement in polymers imprinted using the new monomer versus a traditionally formulated polymer imprinted with methacrylic acid as the functional monomer.