{"title":"姜黄素在体外调节三乙酸铁(Fe-NTA)和过氧化氢(H2O2)诱导的微粒体膜脂过氧化和DNA损伤。","authors":"Mohammad Iqbal, Yasumasa Okazaki, Shigeru Okada","doi":"10.1002/tcm.10070","DOIUrl":null,"url":null,"abstract":"<p><p>A number of investigations have implicated the involvement of free radicals in various pathogenic process including initiation/promotion stages of carcinogenesis and antioxidants have been considered to be a protective agent for this reason. An iron chelate, ferric nitrilotriacetate (Fe-NTA), is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of hydrogen peroxide-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. The latter is associated with a high incidence of renal adenocarcinoma in rodents. Lipid peroxidation and DNA damage are the principal manifestation of Fe-NTA-induced toxicity, which could be mitigated by antioxidants. In this study, we therefore investigated the effect of curcumin, a polyphenolic compound from Curcuma longa for a possible protection against lipid peroxidation and DNA damage induced by Fe-NTA and hydrogen peroxide in vitro. Incubation of renal microsomal membrane/and or calf thymus DNA with hydrogen peroxide (40 mM) in the presence of Fe-NTA (0.1 mM) induces renal microsomal lipid peroxidation and DNA damage to about 2.2-and 5.6-fold, respectively, as compared to saline treated control (P<0.001). Induction of renal microsomal lipid peroxidation and DNA damage was modulated by curcumin dose dependently. In lipid peroxidation protection studies, curcumin treatment showed a dose-dependent strong inhibition (18-80% inhibition, P<0.05-0.001) of Fe-NTA and hydrogen peroxide-induced lipid peroxidation as measured by MDA formation in renal microsomes. Similarly, in DNA-sugar damage protection studies, curcumin treatment also showed a dose dependent inhibition (22-57% inhibition, P<0.05-0.001) of DNA-sugar damage. From these studies, it was concluded that curcumin modulates Fe-NTA and hydrogen peroxide-induced peroxidation of microsomal membrane lipids and DNA damage. Curcumin might, therefore, be a suitable candidate for the chemoprevention of Fe-NTA-associated cancer.</p>","PeriodicalId":22336,"journal":{"name":"Teratogenesis, carcinogenesis, and mutagenesis","volume":"Suppl 1 ","pages":"151-60"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/tcm.10070","citationCount":"52","resultStr":"{\"title\":\"In vitro curcumin modulates ferric nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2)-induced peroxidation of microsomal membrane lipids and DNA damage.\",\"authors\":\"Mohammad Iqbal, Yasumasa Okazaki, Shigeru Okada\",\"doi\":\"10.1002/tcm.10070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A number of investigations have implicated the involvement of free radicals in various pathogenic process including initiation/promotion stages of carcinogenesis and antioxidants have been considered to be a protective agent for this reason. An iron chelate, ferric nitrilotriacetate (Fe-NTA), is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of hydrogen peroxide-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. The latter is associated with a high incidence of renal adenocarcinoma in rodents. Lipid peroxidation and DNA damage are the principal manifestation of Fe-NTA-induced toxicity, which could be mitigated by antioxidants. In this study, we therefore investigated the effect of curcumin, a polyphenolic compound from Curcuma longa for a possible protection against lipid peroxidation and DNA damage induced by Fe-NTA and hydrogen peroxide in vitro. Incubation of renal microsomal membrane/and or calf thymus DNA with hydrogen peroxide (40 mM) in the presence of Fe-NTA (0.1 mM) induces renal microsomal lipid peroxidation and DNA damage to about 2.2-and 5.6-fold, respectively, as compared to saline treated control (P<0.001). Induction of renal microsomal lipid peroxidation and DNA damage was modulated by curcumin dose dependently. In lipid peroxidation protection studies, curcumin treatment showed a dose-dependent strong inhibition (18-80% inhibition, P<0.05-0.001) of Fe-NTA and hydrogen peroxide-induced lipid peroxidation as measured by MDA formation in renal microsomes. Similarly, in DNA-sugar damage protection studies, curcumin treatment also showed a dose dependent inhibition (22-57% inhibition, P<0.05-0.001) of DNA-sugar damage. From these studies, it was concluded that curcumin modulates Fe-NTA and hydrogen peroxide-induced peroxidation of microsomal membrane lipids and DNA damage. Curcumin might, therefore, be a suitable candidate for the chemoprevention of Fe-NTA-associated cancer.</p>\",\"PeriodicalId\":22336,\"journal\":{\"name\":\"Teratogenesis, carcinogenesis, and mutagenesis\",\"volume\":\"Suppl 1 \",\"pages\":\"151-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/tcm.10070\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teratogenesis, carcinogenesis, and mutagenesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/tcm.10070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teratogenesis, carcinogenesis, and mutagenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tcm.10070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In vitro curcumin modulates ferric nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2)-induced peroxidation of microsomal membrane lipids and DNA damage.
A number of investigations have implicated the involvement of free radicals in various pathogenic process including initiation/promotion stages of carcinogenesis and antioxidants have been considered to be a protective agent for this reason. An iron chelate, ferric nitrilotriacetate (Fe-NTA), is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of hydrogen peroxide-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. The latter is associated with a high incidence of renal adenocarcinoma in rodents. Lipid peroxidation and DNA damage are the principal manifestation of Fe-NTA-induced toxicity, which could be mitigated by antioxidants. In this study, we therefore investigated the effect of curcumin, a polyphenolic compound from Curcuma longa for a possible protection against lipid peroxidation and DNA damage induced by Fe-NTA and hydrogen peroxide in vitro. Incubation of renal microsomal membrane/and or calf thymus DNA with hydrogen peroxide (40 mM) in the presence of Fe-NTA (0.1 mM) induces renal microsomal lipid peroxidation and DNA damage to about 2.2-and 5.6-fold, respectively, as compared to saline treated control (P<0.001). Induction of renal microsomal lipid peroxidation and DNA damage was modulated by curcumin dose dependently. In lipid peroxidation protection studies, curcumin treatment showed a dose-dependent strong inhibition (18-80% inhibition, P<0.05-0.001) of Fe-NTA and hydrogen peroxide-induced lipid peroxidation as measured by MDA formation in renal microsomes. Similarly, in DNA-sugar damage protection studies, curcumin treatment also showed a dose dependent inhibition (22-57% inhibition, P<0.05-0.001) of DNA-sugar damage. From these studies, it was concluded that curcumin modulates Fe-NTA and hydrogen peroxide-induced peroxidation of microsomal membrane lipids and DNA damage. Curcumin might, therefore, be a suitable candidate for the chemoprevention of Fe-NTA-associated cancer.