雌激素化大鼠子宫一氧化氮合酶与环氧合酶代谢产物间的串扰。

IF 2.9 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Prostaglandins, leukotrienes, and essential fatty acids Pub Date : 2003-04-01 DOI:10.1016/s0952-3278(03)00008-5
M L Ribeiro, M Cella, M Farina, A Franchi
{"title":"雌激素化大鼠子宫一氧化氮合酶与环氧合酶代谢产物间的串扰。","authors":"M L Ribeiro,&nbsp;M Cella,&nbsp;M Farina,&nbsp;A Franchi","doi":"10.1016/s0952-3278(03)00008-5","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, we investigated the effect of nitric oxide (NO) and prostaglandins (PGs) on the production of arachidonate and L-arginine metabolites. We found that in the estrogenized rat uterus lipopolysaccharide (LPS) 5mg/kg induced NO and PGs synthesis simultaneously. The uteri were incubated with different doses of an NO donor: NP 300 and 600 microM. The results indicate that both doses of NP produce a significant increase (P<0.01) in all prostanoids evaluated. The stimulatory effect was completely reversed by the addition of 2 microg/ml of hemoglobin (Hb), an NO scavenger. However, NOS inhibitor, N(G)-L-monomethyl arginine had no effect on basal prostanoid production. We also studied NO synthesis in the presence of different PGs concentration. We found that PGF(2alpha) and PGD(2) were capable of reversing LPS stimulation on NO synthesis (P<0.05), in all the doses evaluated. On the other hand, PGE(2) 10(-10) and 10(-9)M potentated LPS effect (P<0.001). These results suggest that in the estrogenized rat uterus, the synthesis of cyclooxygenase metabolites is positively regulated by NO, while NO synthesis regulation depends on the PGs evaluated.</p>","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2003-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00008-5","citationCount":"10","resultStr":"{\"title\":\"Crosstalk between nitric oxide synthase and cyclooxygenase metabolites in the estrogenized rat uterus.\",\"authors\":\"M L Ribeiro,&nbsp;M Cella,&nbsp;M Farina,&nbsp;A Franchi\",\"doi\":\"10.1016/s0952-3278(03)00008-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present study, we investigated the effect of nitric oxide (NO) and prostaglandins (PGs) on the production of arachidonate and L-arginine metabolites. We found that in the estrogenized rat uterus lipopolysaccharide (LPS) 5mg/kg induced NO and PGs synthesis simultaneously. The uteri were incubated with different doses of an NO donor: NP 300 and 600 microM. The results indicate that both doses of NP produce a significant increase (P<0.01) in all prostanoids evaluated. The stimulatory effect was completely reversed by the addition of 2 microg/ml of hemoglobin (Hb), an NO scavenger. However, NOS inhibitor, N(G)-L-monomethyl arginine had no effect on basal prostanoid production. We also studied NO synthesis in the presence of different PGs concentration. We found that PGF(2alpha) and PGD(2) were capable of reversing LPS stimulation on NO synthesis (P<0.05), in all the doses evaluated. On the other hand, PGE(2) 10(-10) and 10(-9)M potentated LPS effect (P<0.001). These results suggest that in the estrogenized rat uterus, the synthesis of cyclooxygenase metabolites is positively regulated by NO, while NO synthesis regulation depends on the PGs evaluated.</p>\",\"PeriodicalId\":20659,\"journal\":{\"name\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2003-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00008-5\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/s0952-3278(03)00008-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/s0952-3278(03)00008-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 10

摘要

在本研究中,我们研究了一氧化氮(NO)和前列腺素(pg)对花生四烯酸酯和l -精氨酸代谢产物产生的影响。我们发现,雌激素化大鼠子宫脂多糖(LPS) 5mg/kg可同时诱导NO和PGs的合成。用不同剂量的一氧化氮供体NP 300和600微米孵育子宫。结果表明,两种剂量的NP均能显著增加(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crosstalk between nitric oxide synthase and cyclooxygenase metabolites in the estrogenized rat uterus.

In the present study, we investigated the effect of nitric oxide (NO) and prostaglandins (PGs) on the production of arachidonate and L-arginine metabolites. We found that in the estrogenized rat uterus lipopolysaccharide (LPS) 5mg/kg induced NO and PGs synthesis simultaneously. The uteri were incubated with different doses of an NO donor: NP 300 and 600 microM. The results indicate that both doses of NP produce a significant increase (P<0.01) in all prostanoids evaluated. The stimulatory effect was completely reversed by the addition of 2 microg/ml of hemoglobin (Hb), an NO scavenger. However, NOS inhibitor, N(G)-L-monomethyl arginine had no effect on basal prostanoid production. We also studied NO synthesis in the presence of different PGs concentration. We found that PGF(2alpha) and PGD(2) were capable of reversing LPS stimulation on NO synthesis (P<0.05), in all the doses evaluated. On the other hand, PGE(2) 10(-10) and 10(-9)M potentated LPS effect (P<0.001). These results suggest that in the estrogenized rat uterus, the synthesis of cyclooxygenase metabolites is positively regulated by NO, while NO synthesis regulation depends on the PGs evaluated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
6.70%
发文量
60
审稿时长
13.2 weeks
期刊介绍: The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.
期刊最新文献
Expression of concern: “Curcumin and linseed oil co-delivered in phospholipid nanoemulsions enhances the levels of docosahexaenoic acid in serum and tissue lipids of rats” Lower Omega-3 Status Associated with Higher Erythrocyte Distribution Width and Neutrophil-Lymphocyte Ratio in UK Biobank Cohort Effects of long-chain omega-3 polyunsaturated fatty acids on reducing anxiety and/or depression in adults; A systematic review and meta-analysis of randomised controlled trials Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Differential Effects of Omega-3 Fatty Acids on HO-1, VCAM-1, and Cytotoxicity in Endothelial Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1