Denise A Kaminski, John J Letterio, Peter D Burrows
{"title":"转化生长因子β 1对小鼠B细胞发育的差异调控。","authors":"Denise A Kaminski, John J Letterio, Peter D Burrows","doi":"10.1080/1044667031000088057","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming growth factor beta (TGFbeta) can inhibit the in vitro proliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFbeta1-/- mice. To evaluate TGFbeta responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7) +/- TGFbeta. Picomolar doses of TGFbeta1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1- pre-B cells were sensitive to the inhibitory effects of TGFbeta1. However, the large BP1+ pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFbeta1 is important for normal B cell development in vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.</p>","PeriodicalId":77106,"journal":{"name":"Developmental immunology","volume":"9 2","pages":"85-95"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1044667031000088057","citationCount":"9","resultStr":"{\"title\":\"Differential regulation of mouse B cell development by transforming growth factor beta1.\",\"authors\":\"Denise A Kaminski, John J Letterio, Peter D Burrows\",\"doi\":\"10.1080/1044667031000088057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transforming growth factor beta (TGFbeta) can inhibit the in vitro proliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFbeta1-/- mice. To evaluate TGFbeta responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7) +/- TGFbeta. Picomolar doses of TGFbeta1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1- pre-B cells were sensitive to the inhibitory effects of TGFbeta1. However, the large BP1+ pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFbeta1 is important for normal B cell development in vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.</p>\",\"PeriodicalId\":77106,\"journal\":{\"name\":\"Developmental immunology\",\"volume\":\"9 2\",\"pages\":\"85-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1044667031000088057\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1044667031000088057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1044667031000088057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differential regulation of mouse B cell development by transforming growth factor beta1.
Transforming growth factor beta (TGFbeta) can inhibit the in vitro proliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFbeta1-/- mice. To evaluate TGFbeta responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7) +/- TGFbeta. Picomolar doses of TGFbeta1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1- pre-B cells were sensitive to the inhibitory effects of TGFbeta1. However, the large BP1+ pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFbeta1 is important for normal B cell development in vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.