{"title":"煤焦油沥青挥发物和多环芳烃暴露在一个建筑工地的伸缩缝作业:一个案例研究。","authors":"Lawrence A Kurtz, Dave K Verma, Dru Sahai","doi":"10.1080/10473220301456","DOIUrl":null,"url":null,"abstract":"<p><p>This case study describes occupational exposures to coal tar pitch volatiles (CTPV) as benzene soluble fraction (BSF), polycyclic aromatic hydrocarbons (PAHs) and total particulates at a unique operation involving the use of coal tar in the making of expansion joints in construction of a multi-level airport parking garage. A task-based exposure assessment approach was used. A set of 32 samples was collected and analyzed for total particulate and CTPV-BSF. Twenty samples of this set were analyzed for PAHs. Current American Conference of Governmental Industrial Hygienists (ACGIH(R)) respective threshold limit value-time weighted average (TLV-TWA) for insoluble particulates not otherwise specified (PNOS) is 10 mg/m(3) as inhalable dust, which roughly corresponds to 4 mg/m(3) total particulate; for CTPV as BSF the TLV is 0.2 mg/m(3), and for specific PAHs such as benzo(a)-pyrene (B[a]P), ACGIH suggests keeping exposure as low as practicable. The recommended Swedish exposure limit for B(a)P is 2 microg/m(3). The highest exposure levels measured were 12.8 mg/m(3) for total particulate, 1.9 mg/m(3) for coal tar pitch volatiles as BSF, and 12.8 microg/m(3) for B(a)P. Several of the CTPV-BSF results were over the TLV of 0.2 mg/m(3). The data set is limited; therefore, caution should be used in its interpretation.</p>","PeriodicalId":8182,"journal":{"name":"Applied occupational and environmental hygiene","volume":"18 7","pages":"545-52"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10473220301456","citationCount":"7","resultStr":"{\"title\":\"Coal tar pitch volatiles and polycyclic aromatic hydrocarbons exposures in expansion joint-making operations on a construction site: a case study.\",\"authors\":\"Lawrence A Kurtz, Dave K Verma, Dru Sahai\",\"doi\":\"10.1080/10473220301456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This case study describes occupational exposures to coal tar pitch volatiles (CTPV) as benzene soluble fraction (BSF), polycyclic aromatic hydrocarbons (PAHs) and total particulates at a unique operation involving the use of coal tar in the making of expansion joints in construction of a multi-level airport parking garage. A task-based exposure assessment approach was used. A set of 32 samples was collected and analyzed for total particulate and CTPV-BSF. Twenty samples of this set were analyzed for PAHs. Current American Conference of Governmental Industrial Hygienists (ACGIH(R)) respective threshold limit value-time weighted average (TLV-TWA) for insoluble particulates not otherwise specified (PNOS) is 10 mg/m(3) as inhalable dust, which roughly corresponds to 4 mg/m(3) total particulate; for CTPV as BSF the TLV is 0.2 mg/m(3), and for specific PAHs such as benzo(a)-pyrene (B[a]P), ACGIH suggests keeping exposure as low as practicable. The recommended Swedish exposure limit for B(a)P is 2 microg/m(3). The highest exposure levels measured were 12.8 mg/m(3) for total particulate, 1.9 mg/m(3) for coal tar pitch volatiles as BSF, and 12.8 microg/m(3) for B(a)P. Several of the CTPV-BSF results were over the TLV of 0.2 mg/m(3). The data set is limited; therefore, caution should be used in its interpretation.</p>\",\"PeriodicalId\":8182,\"journal\":{\"name\":\"Applied occupational and environmental hygiene\",\"volume\":\"18 7\",\"pages\":\"545-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10473220301456\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied occupational and environmental hygiene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10473220301456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied occupational and environmental hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10473220301456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coal tar pitch volatiles and polycyclic aromatic hydrocarbons exposures in expansion joint-making operations on a construction site: a case study.
This case study describes occupational exposures to coal tar pitch volatiles (CTPV) as benzene soluble fraction (BSF), polycyclic aromatic hydrocarbons (PAHs) and total particulates at a unique operation involving the use of coal tar in the making of expansion joints in construction of a multi-level airport parking garage. A task-based exposure assessment approach was used. A set of 32 samples was collected and analyzed for total particulate and CTPV-BSF. Twenty samples of this set were analyzed for PAHs. Current American Conference of Governmental Industrial Hygienists (ACGIH(R)) respective threshold limit value-time weighted average (TLV-TWA) for insoluble particulates not otherwise specified (PNOS) is 10 mg/m(3) as inhalable dust, which roughly corresponds to 4 mg/m(3) total particulate; for CTPV as BSF the TLV is 0.2 mg/m(3), and for specific PAHs such as benzo(a)-pyrene (B[a]P), ACGIH suggests keeping exposure as low as practicable. The recommended Swedish exposure limit for B(a)P is 2 microg/m(3). The highest exposure levels measured were 12.8 mg/m(3) for total particulate, 1.9 mg/m(3) for coal tar pitch volatiles as BSF, and 12.8 microg/m(3) for B(a)P. Several of the CTPV-BSF results were over the TLV of 0.2 mg/m(3). The data set is limited; therefore, caution should be used in its interpretation.