辛伐他汀对门诊冠心病患者血清三油基甘油水解和转酰基化与胆固醇的影响。

M Pioruńska-Stolzmann, A Pioruńska-Mikolajczak, Z Mikolajczyk
{"title":"辛伐他汀对门诊冠心病患者血清三油基甘油水解和转酰基化与胆固醇的影响。","authors":"M Pioruńska-Stolzmann,&nbsp;A Pioruńska-Mikolajczak,&nbsp;Z Mikolajczyk","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>At present, the most effective drugs in treating hypercholesterolemia and atherosclerosis are the statins, which are potent inhibitors of the rate-limiting enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Serum triacylglycerol (TAG) levels associate positively with the risk for coronary heart disease (CHD). Triacylglycerols are mainly hydrolyzed by the enzyme lipase (glycerol ester hydrolase [GEH], EC 3.1.1.3) but can also be transformed by transacylation with cholesterol (glycerol ester:cholesterol acyltransferase [GECAT], EC 2.3.1.43). We evaluated the effect of a 3-month treatment with simvastatin (10 mg/day) on GEH and GECAT activity in the serum of 26 outpatients with CHD. The activity of both GEH and GECAT was reduced in the CHD group compared with that in the control group: 5.9 +/- 0.9 mU/mg vs. 7.5 +/- 1.8 mU/mg and 11.1 +/- 1.4 mU/mg vs. 19.3 +/- 3.3 mU/mg, respectively (p < or = 0.05). In addition to the well known effect of reducing total cholesterol and low-density lipoprotein cholesterol in patients with CHD, we observed two other results of simvastatin treatment. First, GEH activity increased to values similar to those found in healthy subjects and, simultaneously, GECAT activity decreased. Trioleylglycerol transacylation with cholesterol amounted to 72% and hydrolysis to 28% in the control group and to 65% and 35% in the CHD group, respectively. After simvastatin treatment, transacylation with cholesterol and hydrolysis amounted to 51% and 49%, respectively. In conclusion, by increasing GEH and reducing GECAT, simvastatin seems not only to affect cholesterol synthesis but also to alter triacylglycerol metabolism. Further studies are needed to determine the physiological significance of these changes and their relationship with the development of atherosclerosis.</p>","PeriodicalId":11336,"journal":{"name":"Drugs under experimental and clinical research","volume":"29 1","pages":"37-43"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of simvastatin on trioleylglycerol hydrolysis and transacylation with cholesterol in serum of outpatients with coronary heart disease.\",\"authors\":\"M Pioruńska-Stolzmann,&nbsp;A Pioruńska-Mikolajczak,&nbsp;Z Mikolajczyk\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>At present, the most effective drugs in treating hypercholesterolemia and atherosclerosis are the statins, which are potent inhibitors of the rate-limiting enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Serum triacylglycerol (TAG) levels associate positively with the risk for coronary heart disease (CHD). Triacylglycerols are mainly hydrolyzed by the enzyme lipase (glycerol ester hydrolase [GEH], EC 3.1.1.3) but can also be transformed by transacylation with cholesterol (glycerol ester:cholesterol acyltransferase [GECAT], EC 2.3.1.43). We evaluated the effect of a 3-month treatment with simvastatin (10 mg/day) on GEH and GECAT activity in the serum of 26 outpatients with CHD. The activity of both GEH and GECAT was reduced in the CHD group compared with that in the control group: 5.9 +/- 0.9 mU/mg vs. 7.5 +/- 1.8 mU/mg and 11.1 +/- 1.4 mU/mg vs. 19.3 +/- 3.3 mU/mg, respectively (p < or = 0.05). In addition to the well known effect of reducing total cholesterol and low-density lipoprotein cholesterol in patients with CHD, we observed two other results of simvastatin treatment. First, GEH activity increased to values similar to those found in healthy subjects and, simultaneously, GECAT activity decreased. Trioleylglycerol transacylation with cholesterol amounted to 72% and hydrolysis to 28% in the control group and to 65% and 35% in the CHD group, respectively. After simvastatin treatment, transacylation with cholesterol and hydrolysis amounted to 51% and 49%, respectively. In conclusion, by increasing GEH and reducing GECAT, simvastatin seems not only to affect cholesterol synthesis but also to alter triacylglycerol metabolism. Further studies are needed to determine the physiological significance of these changes and their relationship with the development of atherosclerosis.</p>\",\"PeriodicalId\":11336,\"journal\":{\"name\":\"Drugs under experimental and clinical research\",\"volume\":\"29 1\",\"pages\":\"37-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drugs under experimental and clinical research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drugs under experimental and clinical research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,治疗高胆固醇血症和动脉粥样硬化最有效的药物是他汀类药物,他汀类药物是限速酶3-羟基-3-甲基戊二酰辅酶A (HMG-CoA)还原酶的有效抑制剂。血清三酰甘油(TAG)水平与冠心病(CHD)风险呈正相关。三酰基甘油主要由脂肪酶(甘油酯水解酶[GEH], EC 3.1.1.3)水解,但也可以通过与胆固醇(甘油酯:胆固醇酰基转移酶[GECAT], EC 2.3.1.43)转酰基化转化。我们评估了辛伐他汀(10mg /天)治疗3个月对26例冠心病门诊患者血清GEH和GECAT活性的影响。与对照组相比,冠心病组GEH和GECAT活性降低:分别为5.9 +/- 0.9 mU/mg和7.5 +/- 1.8 mU/mg, 11.1 +/- 1.4 mU/mg和19.3 +/- 3.3 mU/mg (p < or = 0.05)。除了众所周知的降低冠心病患者总胆固醇和低密度脂蛋白胆固醇的作用外,我们还观察到辛伐他汀治疗的另外两个结果。首先,GEH活性增加到与健康受试者相似的值,同时,GECAT活性下降。三油基甘油与胆固醇的转酰基化率在对照组为72%,水解率为28%,冠心病组为65%和35%。经辛伐他汀治疗后,胆固醇转酰化和水解率分别为51%和49%。综上所述,辛伐他汀通过增加GEH和降低GECAT,似乎不仅影响胆固醇合成,而且改变甘油三酯代谢。这些变化的生理意义及其与动脉粥样硬化发展的关系有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of simvastatin on trioleylglycerol hydrolysis and transacylation with cholesterol in serum of outpatients with coronary heart disease.

At present, the most effective drugs in treating hypercholesterolemia and atherosclerosis are the statins, which are potent inhibitors of the rate-limiting enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Serum triacylglycerol (TAG) levels associate positively with the risk for coronary heart disease (CHD). Triacylglycerols are mainly hydrolyzed by the enzyme lipase (glycerol ester hydrolase [GEH], EC 3.1.1.3) but can also be transformed by transacylation with cholesterol (glycerol ester:cholesterol acyltransferase [GECAT], EC 2.3.1.43). We evaluated the effect of a 3-month treatment with simvastatin (10 mg/day) on GEH and GECAT activity in the serum of 26 outpatients with CHD. The activity of both GEH and GECAT was reduced in the CHD group compared with that in the control group: 5.9 +/- 0.9 mU/mg vs. 7.5 +/- 1.8 mU/mg and 11.1 +/- 1.4 mU/mg vs. 19.3 +/- 3.3 mU/mg, respectively (p < or = 0.05). In addition to the well known effect of reducing total cholesterol and low-density lipoprotein cholesterol in patients with CHD, we observed two other results of simvastatin treatment. First, GEH activity increased to values similar to those found in healthy subjects and, simultaneously, GECAT activity decreased. Trioleylglycerol transacylation with cholesterol amounted to 72% and hydrolysis to 28% in the control group and to 65% and 35% in the CHD group, respectively. After simvastatin treatment, transacylation with cholesterol and hydrolysis amounted to 51% and 49%, respectively. In conclusion, by increasing GEH and reducing GECAT, simvastatin seems not only to affect cholesterol synthesis but also to alter triacylglycerol metabolism. Further studies are needed to determine the physiological significance of these changes and their relationship with the development of atherosclerosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oral acute and subchronic toxicity of D-004, a lipid extract from Roystonea regia fruits, in rats. Evaluation of carnitine, acetylcarnitine and isovalerylcarnitine on immune function and apoptosis. Pharmacokinetics of a new extended-release nifedipine formulation following a single oral dose, in human volunteers. Molecular mechanisms for vascular injury in the metabolic syndrome. Quercus suber cork extract displays a tensor and smoothing effect on human skin: an in vivo study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1