选择性头部降温加低温可抑制围产期窒息新生儿脑脊液中血小板活化因子的产生。

IF 2.9 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Prostaglandins, leukotrienes, and essential fatty acids Pub Date : 2003-07-01 DOI:10.1016/s0952-3278(03)00055-3
Mete Akisu, Afig Huseyinov, Mehmet Yalaz, Hasan Cetin, Nilgun Kultursay
{"title":"选择性头部降温加低温可抑制围产期窒息新生儿脑脊液中血小板活化因子的产生。","authors":"Mete Akisu,&nbsp;Afig Huseyinov,&nbsp;Mehmet Yalaz,&nbsp;Hasan Cetin,&nbsp;Nilgun Kultursay","doi":"10.1016/s0952-3278(03)00055-3","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic-ischemic encephalopathy (HIE) remains one of the most important neurologic complications in the newborn. Several experimental and clinical studies have shown that hypothermia is the most effective means known for protecting the brain against hypoxic-ischemic brain damage. Furthermore, recent data have suggested that platelet-activating factor (PAF) could play a pathophysiologically important role in the progression of hypoxic-ischemic brain injury. The aim of the present study was to investigate the role of head cooling combined with minimal hypothermia in short-term outcome of infants with perinatal asphyxia. In addition, we have examined the effect of head cooling combined with minimal hypothermia on PAF concentrations in cerebrospinal fluid (CSF) after hypoxic-ischemic brain injury. The group of asphyxiated infants (Group 1) consisted of 21 full-term (gestational age >37 weeks). These infants were randomized and divided into either a standard therapy group (Group 1a; n=10) or cooling group (Group 1b; n=11). Head cooling combined with minimal hypothermia (rectal temperature 36.5-36 degrees C) was started as soon as practicable after birth. The infants were cooled for 72h and then were rewarmed at 0.5 degrees C/h. The control group (Group 2) consisted of seven full-term infants and none of these infants showed any sign of asphyxia. To measure PAF concentration in CSF, CSF with lumbar puncture was collected into tubes immediately before the cooling (1-3h after birth) and again after 36h. We had no evidence of severe adverse events related to hypothermia. In Group 1a, two infants died after 72h of life; however, all newborn infants in Group 1b survived. Convulsion required treatment in three infants of standard therapy group (1a); none of the infants in Group 1b had clinical seizure activity. Abnormal EEG patterns were found in four infants of Group 1a; no EEG abnormalities were noted in Group 1b (P<0.05). On admission (before cooling), PAF concentration in CSF of asphyxiated infants was found to be significantly higher when compared with that of control (P<0.001). Mean PAF concentration before initiation of the study was similar in the two asphyxiated groups (Group 1a vs. 1b) (P>0.05). Obtained PAF level in CSF after 36h, showed a profound decline in cooling group of infants compared to Group 1a infants (P<0.01). In conclusion, the present study suggests that cerebral cooling with minimal hypothermia started soon after birth has no severe adverse effects during 72-h cooling period and that short-term outcome of infants are encouraging. Our results also support the hypothesis PAF an important mediator in hypoxic-ischemic brain injury and demonstrate that head cooling combined with minimal hypothermia reduces the normal increase in PAF following hypoxic-ischemic brain injury in full-term infants.</p>","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00055-3","citationCount":"76","resultStr":"{\"title\":\"Selective head cooling with hypothermia suppresses the generation of platelet-activating factor in cerebrospinal fluid of newborn infants with perinatal asphyxia.\",\"authors\":\"Mete Akisu,&nbsp;Afig Huseyinov,&nbsp;Mehmet Yalaz,&nbsp;Hasan Cetin,&nbsp;Nilgun Kultursay\",\"doi\":\"10.1016/s0952-3278(03)00055-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxic-ischemic encephalopathy (HIE) remains one of the most important neurologic complications in the newborn. Several experimental and clinical studies have shown that hypothermia is the most effective means known for protecting the brain against hypoxic-ischemic brain damage. Furthermore, recent data have suggested that platelet-activating factor (PAF) could play a pathophysiologically important role in the progression of hypoxic-ischemic brain injury. The aim of the present study was to investigate the role of head cooling combined with minimal hypothermia in short-term outcome of infants with perinatal asphyxia. In addition, we have examined the effect of head cooling combined with minimal hypothermia on PAF concentrations in cerebrospinal fluid (CSF) after hypoxic-ischemic brain injury. The group of asphyxiated infants (Group 1) consisted of 21 full-term (gestational age >37 weeks). These infants were randomized and divided into either a standard therapy group (Group 1a; n=10) or cooling group (Group 1b; n=11). Head cooling combined with minimal hypothermia (rectal temperature 36.5-36 degrees C) was started as soon as practicable after birth. The infants were cooled for 72h and then were rewarmed at 0.5 degrees C/h. The control group (Group 2) consisted of seven full-term infants and none of these infants showed any sign of asphyxia. To measure PAF concentration in CSF, CSF with lumbar puncture was collected into tubes immediately before the cooling (1-3h after birth) and again after 36h. We had no evidence of severe adverse events related to hypothermia. In Group 1a, two infants died after 72h of life; however, all newborn infants in Group 1b survived. Convulsion required treatment in three infants of standard therapy group (1a); none of the infants in Group 1b had clinical seizure activity. Abnormal EEG patterns were found in four infants of Group 1a; no EEG abnormalities were noted in Group 1b (P<0.05). On admission (before cooling), PAF concentration in CSF of asphyxiated infants was found to be significantly higher when compared with that of control (P<0.001). Mean PAF concentration before initiation of the study was similar in the two asphyxiated groups (Group 1a vs. 1b) (P>0.05). Obtained PAF level in CSF after 36h, showed a profound decline in cooling group of infants compared to Group 1a infants (P<0.01). In conclusion, the present study suggests that cerebral cooling with minimal hypothermia started soon after birth has no severe adverse effects during 72-h cooling period and that short-term outcome of infants are encouraging. Our results also support the hypothesis PAF an important mediator in hypoxic-ischemic brain injury and demonstrate that head cooling combined with minimal hypothermia reduces the normal increase in PAF following hypoxic-ischemic brain injury in full-term infants.</p>\",\"PeriodicalId\":20659,\"journal\":{\"name\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00055-3\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/s0952-3278(03)00055-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/s0952-3278(03)00055-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 76

摘要

缺氧缺血性脑病(HIE)仍然是新生儿最重要的神经系统并发症之一。一些实验和临床研究表明,低温是已知的保护大脑免受缺氧缺血性脑损伤的最有效手段。此外,最近的数据表明,血小板活化因子(PAF)可能在缺氧缺血性脑损伤的进展中发挥重要的病理生理作用。本研究的目的是探讨头部冷却联合最低低温在围产期窒息婴儿短期预后中的作用。此外,我们还研究了头部冷却联合最低低温对缺氧缺血性脑损伤后脑脊液(CSF)中PAF浓度的影响。窒息婴儿组(第一组)为21例足月婴儿(胎龄>37周)。这些婴儿被随机分为标准治疗组(1a组;n=10)或冷却组(1b组;n = 11)。出生后尽快开始头部冷却并结合最低低温(直肠温度36.5-36℃)。将婴儿冷却72小时,然后以0.5℃/h的温度重新加热。对照组(第二组)由7名足月婴儿组成,这些婴儿没有任何窒息迹象。为了测量脑脊液中PAF的浓度,在冷却前(出生后1-3h)和36h后立即将腰椎穿刺的脑脊液收集到管中。我们没有证据表明与低温相关的严重不良事件。1a组有2例婴儿在出生72h后死亡;1b组新生儿全部存活。标准治疗组有3例婴儿惊厥需要治疗(1a);1b组婴儿无临床癫痫发作活动。1a组4例患儿脑电图异常;1b组未见脑电图异常(P0.05)。36小时后测定脑脊液中PAF水平,与1a组相比,降温组明显下降(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selective head cooling with hypothermia suppresses the generation of platelet-activating factor in cerebrospinal fluid of newborn infants with perinatal asphyxia.

Hypoxic-ischemic encephalopathy (HIE) remains one of the most important neurologic complications in the newborn. Several experimental and clinical studies have shown that hypothermia is the most effective means known for protecting the brain against hypoxic-ischemic brain damage. Furthermore, recent data have suggested that platelet-activating factor (PAF) could play a pathophysiologically important role in the progression of hypoxic-ischemic brain injury. The aim of the present study was to investigate the role of head cooling combined with minimal hypothermia in short-term outcome of infants with perinatal asphyxia. In addition, we have examined the effect of head cooling combined with minimal hypothermia on PAF concentrations in cerebrospinal fluid (CSF) after hypoxic-ischemic brain injury. The group of asphyxiated infants (Group 1) consisted of 21 full-term (gestational age >37 weeks). These infants were randomized and divided into either a standard therapy group (Group 1a; n=10) or cooling group (Group 1b; n=11). Head cooling combined with minimal hypothermia (rectal temperature 36.5-36 degrees C) was started as soon as practicable after birth. The infants were cooled for 72h and then were rewarmed at 0.5 degrees C/h. The control group (Group 2) consisted of seven full-term infants and none of these infants showed any sign of asphyxia. To measure PAF concentration in CSF, CSF with lumbar puncture was collected into tubes immediately before the cooling (1-3h after birth) and again after 36h. We had no evidence of severe adverse events related to hypothermia. In Group 1a, two infants died after 72h of life; however, all newborn infants in Group 1b survived. Convulsion required treatment in three infants of standard therapy group (1a); none of the infants in Group 1b had clinical seizure activity. Abnormal EEG patterns were found in four infants of Group 1a; no EEG abnormalities were noted in Group 1b (P<0.05). On admission (before cooling), PAF concentration in CSF of asphyxiated infants was found to be significantly higher when compared with that of control (P<0.001). Mean PAF concentration before initiation of the study was similar in the two asphyxiated groups (Group 1a vs. 1b) (P>0.05). Obtained PAF level in CSF after 36h, showed a profound decline in cooling group of infants compared to Group 1a infants (P<0.01). In conclusion, the present study suggests that cerebral cooling with minimal hypothermia started soon after birth has no severe adverse effects during 72-h cooling period and that short-term outcome of infants are encouraging. Our results also support the hypothesis PAF an important mediator in hypoxic-ischemic brain injury and demonstrate that head cooling combined with minimal hypothermia reduces the normal increase in PAF following hypoxic-ischemic brain injury in full-term infants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
6.70%
发文量
60
审稿时长
13.2 weeks
期刊介绍: The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.
期刊最新文献
Expression of concern: “Curcumin and linseed oil co-delivered in phospholipid nanoemulsions enhances the levels of docosahexaenoic acid in serum and tissue lipids of rats” Lower Omega-3 Status Associated with Higher Erythrocyte Distribution Width and Neutrophil-Lymphocyte Ratio in UK Biobank Cohort Effects of long-chain omega-3 polyunsaturated fatty acids on reducing anxiety and/or depression in adults; A systematic review and meta-analysis of randomised controlled trials Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Differential Effects of Omega-3 Fatty Acids on HO-1, VCAM-1, and Cytotoxicity in Endothelial Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1