{"title":"DNA双链形成的新的热力学表征和过渡机制。","authors":"P Wu, N Sugimoto","doi":"10.1093/nass/44.1.15","DOIUrl":null,"url":null,"abstract":"<p><p>A new transition mechanism of DNA duplex association was proposed and a segregated transition model (STM) was further derived. The experimental results in various molar ratios showed that the duplex association transition is imperfect and the thermodynamic properties and self-transition behavior of single strands exert a significant influence on DNA duplex formation.</p>","PeriodicalId":19394,"journal":{"name":"Nucleic acids symposium series","volume":" 44","pages":"15-6"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/nass/44.1.15","citationCount":"1","resultStr":"{\"title\":\"New thermodynamic characterization and transition mechanism of DNA duplex formation.\",\"authors\":\"P Wu, N Sugimoto\",\"doi\":\"10.1093/nass/44.1.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new transition mechanism of DNA duplex association was proposed and a segregated transition model (STM) was further derived. The experimental results in various molar ratios showed that the duplex association transition is imperfect and the thermodynamic properties and self-transition behavior of single strands exert a significant influence on DNA duplex formation.</p>\",\"PeriodicalId\":19394,\"journal\":{\"name\":\"Nucleic acids symposium series\",\"volume\":\" 44\",\"pages\":\"15-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/nass/44.1.15\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic acids symposium series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nass/44.1.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acids symposium series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nass/44.1.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New thermodynamic characterization and transition mechanism of DNA duplex formation.
A new transition mechanism of DNA duplex association was proposed and a segregated transition model (STM) was further derived. The experimental results in various molar ratios showed that the duplex association transition is imperfect and the thermodynamic properties and self-transition behavior of single strands exert a significant influence on DNA duplex formation.