H Maruoka, S Kitaoka, N Tohnai, Y Inaki, T Hatae, T Tanabe
{"title":"核酸碱基的异聚(s -羧甲基- l-半胱氨酸)衍生物的行为和作用。","authors":"H Maruoka, S Kitaoka, N Tohnai, Y Inaki, T Hatae, T Tanabe","doi":"10.1093/nass/44.1.195","DOIUrl":null,"url":null,"abstract":"<p><p>Isopoly(S-carboxymethyl-L-cysteine) derivatives of nucleic acid bases were prepared as antisense compounds. These compounds in vitro have been found to form stable complex with oligo-DNA or RNA. This paper deals with effect of antisense compounds in vivo. The target in this paper is the sequence of the PSD-95 protein linked with NMDA receptor. Excess passing of calcium ions through the loss of the signal pathway without PSD-95 proteins caused by antisense compound. The cells detailing with L-cysteine derivatives showed the lowest percentage of 19.1%. The data were compared with that of phosphotioate antisense compound.</p>","PeriodicalId":19394,"journal":{"name":"Nucleic acids symposium series","volume":" 44","pages":"195-6"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/nass/44.1.195","citationCount":"0","resultStr":"{\"title\":\"The behavior and effect of isopoly (S-carboxymethyl-L-cysteine) derivatives of nucleic acid bases.\",\"authors\":\"H Maruoka, S Kitaoka, N Tohnai, Y Inaki, T Hatae, T Tanabe\",\"doi\":\"10.1093/nass/44.1.195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Isopoly(S-carboxymethyl-L-cysteine) derivatives of nucleic acid bases were prepared as antisense compounds. These compounds in vitro have been found to form stable complex with oligo-DNA or RNA. This paper deals with effect of antisense compounds in vivo. The target in this paper is the sequence of the PSD-95 protein linked with NMDA receptor. Excess passing of calcium ions through the loss of the signal pathway without PSD-95 proteins caused by antisense compound. The cells detailing with L-cysteine derivatives showed the lowest percentage of 19.1%. The data were compared with that of phosphotioate antisense compound.</p>\",\"PeriodicalId\":19394,\"journal\":{\"name\":\"Nucleic acids symposium series\",\"volume\":\" 44\",\"pages\":\"195-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/nass/44.1.195\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic acids symposium series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nass/44.1.195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acids symposium series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nass/44.1.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The behavior and effect of isopoly (S-carboxymethyl-L-cysteine) derivatives of nucleic acid bases.
Isopoly(S-carboxymethyl-L-cysteine) derivatives of nucleic acid bases were prepared as antisense compounds. These compounds in vitro have been found to form stable complex with oligo-DNA or RNA. This paper deals with effect of antisense compounds in vivo. The target in this paper is the sequence of the PSD-95 protein linked with NMDA receptor. Excess passing of calcium ions through the loss of the signal pathway without PSD-95 proteins caused by antisense compound. The cells detailing with L-cysteine derivatives showed the lowest percentage of 19.1%. The data were compared with that of phosphotioate antisense compound.