基于GEDI和ICESat-2数据的中国森林冠层高度神经网络插值

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2022-02-01 DOI:10.1016/j.rse.2021.112844
Xiaoqiang Liu , Yanjun Su , Tianyu Hu , Qiuli Yang , Bingbing Liu , Yufei Deng , Hao Tang , Zhiyao Tang , Jingyun Fang , Qinghua Guo
{"title":"基于GEDI和ICESat-2数据的中国森林冠层高度神经网络插值","authors":"Xiaoqiang Liu ,&nbsp;Yanjun Su ,&nbsp;Tianyu Hu ,&nbsp;Qiuli Yang ,&nbsp;Bingbing Liu ,&nbsp;Yufei Deng ,&nbsp;Hao Tang ,&nbsp;Zhiyao Tang ,&nbsp;Jingyun Fang ,&nbsp;Qinghua Guo","doi":"10.1016/j.rse.2021.112844","DOIUrl":null,"url":null,"abstract":"<div><p>Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km<sup>2</sup> drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R<sup>2</sup> = 0.55, RMSE = 5.32 m), about 33 km<sup>2</sup> drone-lidar validation data (R<sup>2</sup> = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R<sup>2</sup> = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes.</p></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data\",\"authors\":\"Xiaoqiang Liu ,&nbsp;Yanjun Su ,&nbsp;Tianyu Hu ,&nbsp;Qiuli Yang ,&nbsp;Bingbing Liu ,&nbsp;Yufei Deng ,&nbsp;Hao Tang ,&nbsp;Zhiyao Tang ,&nbsp;Jingyun Fang ,&nbsp;Qinghua Guo\",\"doi\":\"10.1016/j.rse.2021.112844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km<sup>2</sup> drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R<sup>2</sup> = 0.55, RMSE = 5.32 m), about 33 km<sup>2</sup> drone-lidar validation data (R<sup>2</sup> = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R<sup>2</sup> = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes.</p></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425721005642\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425721005642","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 47

摘要

在国家和全球尺度上对森林冠层高度进行空间连续估算对于量化森林碳储量、了解森林生态系统过程以及制定森林管理和恢复政策以减缓全球气候变化至关重要。星载光探测和测距(激光雷达)平台,特别是全球生态系统动力学调查(GEDI)和冰、云和陆地高程卫星-2 (ICESat-2)先进地形激光高度计系统(ATLAS),可以测量全球离散足迹中的森林冠层高度。它们的覆盖范围为国家到全球尺度的森林冠层高度估计提供了一个有希望的数据来源。然而,以往的研究通常采用基于回归的方法,借助光学图像来获得空间连续的森林冠层高度分布,不能充分利用星载激光雷达密集的足迹,还可能受到光学图像的饱和效应的影响。本研究基于GEDI、ICESat-2 ATLAS和Sentinel-2图像,提出了一种新的神经网络引导插值(NNGI)方法来绘制森林冠层高度。为了评估所提出的NNGI方法的性能,我们生成了2019年中国30米森林冠层高度产品。在全国范围内收集了超过140平方公里的无人机激光雷达数据,以训练和验证NNGI方法。结果表明,中国森林冠层平均高度为15.90 m,标准差为5.77 m。利用110万多个GEDI验证足迹(R2 = 0.55, RMSE = 5.32 m)、33 km2无人机-激光雷达验证数据(R2 = 0.58, RMSE = 4.93 m)和5.9万多个野外样地测量数据(R2 = 0.60, RMSE = 4.88 m)对插值后的中国森林冠层高度产品进行了评价,结果表明,基于插值的地图绘制策略在森林冠层高的地区几乎没有饱和效应。高制图精度证明了NNGI方法通过整合多平台星载激光雷达数据和光学图像,在国家到全球尺度上监测空间连续森林冠层高度的可行性,为更准确地量化陆地碳储量和更好地了解森林生态系统过程提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data

Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km2 drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R2 = 0.55, RMSE = 5.32 m), about 33 km2 drone-lidar validation data (R2 = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R2 = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Vegetation signal crosstalk present in official SMAP surface soil moisture retrievals Evaluating the utility of hyperspectral data to monitor local-scale β-diversity across space and time Separation of the direct reflection of soil from canopy spectral reflectance Earth's record-high greenness and its attributions in 2020 Evaluation of runoff variability in transboundary basins over High Mountain Asia: Multi-dataset merging based on satellite gravimetry constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1