气理云母表面的性质

IF 8.2 1区 化学 Q1 CHEMISTRY, PHYSICAL Surface Science Reports Pub Date : 2016-06-01 DOI:10.1016/j.surfrep.2016.03.001
Hugo K. Christenson , Neil H. Thomson
{"title":"气理云母表面的性质","authors":"Hugo K. Christenson ,&nbsp;Neil H. Thomson","doi":"10.1016/j.surfrep.2016.03.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>The accepted image of muscovite mica is that of an inert and atomically smooth surface, easily prepared by cleavage in an ambient atmosphere. Consequently, mica is extensively used a model substrate in many fundamental studies of surface phenomena and as a substrate for AFM<span> imaging of biomolecules. In this review we present evidence from the literature that the above picture is not quite correct. The mica used in experimental work is almost invariably cleaved in laboratory air, where a reaction between the mica surface, atmospheric CO</span></span><sub>2</sub> and water occurs immediately after cleavage. The evidence suggests very strongly that as a result the mica surface becomes covered by up to one formula unit of K<sub>2</sub>CO<sub>3</sub> per nm<sup>2</sup>, which is mobile under humid conditions, and crystallises under drier conditions. The properties of mica in air or water vapour cannot be fully understood without reference to the surface K<sub>2</sub>CO<sub>3</sub><span>, and many studies of the structure of adsorbed water on mica surfaces may need to be revisited. With this new insight, however, the air-cleaved mica should provide exciting opportunities to study phenomena such as two-dimensional ion diffusion<span><span>, electrolyte effects on surface conductivity, and two-dimensional </span>crystal nucleation.</span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"71 2","pages":"Pages 367-390"},"PeriodicalIF":8.2000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2016.03.001","citationCount":"98","resultStr":"{\"title\":\"The nature of the air-cleaved mica surface\",\"authors\":\"Hugo K. Christenson ,&nbsp;Neil H. Thomson\",\"doi\":\"10.1016/j.surfrep.2016.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The accepted image of muscovite mica is that of an inert and atomically smooth surface, easily prepared by cleavage in an ambient atmosphere. Consequently, mica is extensively used a model substrate in many fundamental studies of surface phenomena and as a substrate for AFM<span> imaging of biomolecules. In this review we present evidence from the literature that the above picture is not quite correct. The mica used in experimental work is almost invariably cleaved in laboratory air, where a reaction between the mica surface, atmospheric CO</span></span><sub>2</sub> and water occurs immediately after cleavage. The evidence suggests very strongly that as a result the mica surface becomes covered by up to one formula unit of K<sub>2</sub>CO<sub>3</sub> per nm<sup>2</sup>, which is mobile under humid conditions, and crystallises under drier conditions. The properties of mica in air or water vapour cannot be fully understood without reference to the surface K<sub>2</sub>CO<sub>3</sub><span>, and many studies of the structure of adsorbed water on mica surfaces may need to be revisited. With this new insight, however, the air-cleaved mica should provide exciting opportunities to study phenomena such as two-dimensional ion diffusion<span><span>, electrolyte effects on surface conductivity, and two-dimensional </span>crystal nucleation.</span></span></p></div>\",\"PeriodicalId\":434,\"journal\":{\"name\":\"Surface Science Reports\",\"volume\":\"71 2\",\"pages\":\"Pages 367-390\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.surfrep.2016.03.001\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167572916000066\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572916000066","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 98

摘要

白云母的公认形象是一种惰性和原子光滑的表面,很容易在环境气氛中通过解理制备。因此,云母在许多表面现象的基础研究中被广泛用作模型底物,也被用作生物分子AFM成像的底物。在这篇综述中,我们从文献中提出证据,证明上述图片并不完全正确。用于实验工作的云母几乎总是在实验室空气中被劈裂,劈裂后云母表面、大气中的二氧化碳和水之间立即发生反应。证据非常有力地表明,结果,云母表面被每nm2一个公式单位的K2CO3所覆盖,在潮湿条件下是可移动的,在干燥条件下结晶。如果不参考表面的K2CO3,云母在空气或水蒸气中的性质就不能完全理解,并且许多关于云母表面吸附水的结构的研究可能需要重新审视。然而,有了这一新的认识,气裂云母应该为研究二维离子扩散、电解质对表面电导率的影响和二维晶体成核等现象提供令人兴奋的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The nature of the air-cleaved mica surface

The accepted image of muscovite mica is that of an inert and atomically smooth surface, easily prepared by cleavage in an ambient atmosphere. Consequently, mica is extensively used a model substrate in many fundamental studies of surface phenomena and as a substrate for AFM imaging of biomolecules. In this review we present evidence from the literature that the above picture is not quite correct. The mica used in experimental work is almost invariably cleaved in laboratory air, where a reaction between the mica surface, atmospheric CO2 and water occurs immediately after cleavage. The evidence suggests very strongly that as a result the mica surface becomes covered by up to one formula unit of K2CO3 per nm2, which is mobile under humid conditions, and crystallises under drier conditions. The properties of mica in air or water vapour cannot be fully understood without reference to the surface K2CO3, and many studies of the structure of adsorbed water on mica surfaces may need to be revisited. With this new insight, however, the air-cleaved mica should provide exciting opportunities to study phenomena such as two-dimensional ion diffusion, electrolyte effects on surface conductivity, and two-dimensional crystal nucleation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Science Reports
Surface Science Reports 化学-物理:凝聚态物理
CiteScore
15.90
自引率
2.00%
发文量
9
审稿时长
178 days
期刊介绍: Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.
期刊最新文献
Editorial Board Hexagonal boron nitride on metal surfaces as a support and template X-ray photoelectron spectroscopy of epitaxial films and heterostructures Editorial Board Atomic wires on substrates: Physics between one and two dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1