{"title":"γ-羟谷氨酸在大鼠肝脏中的代谢ⅰ。丙酮酸和乙醛酸酯酶合成γ-羟基-α-酮戊二酸酯","authors":"Kazuoki Kuratomi, Keiko Fukunaga","doi":"10.1016/0006-3002(63)91027-8","DOIUrl":null,"url":null,"abstract":"<div><p></p><ul><li><span>1.</span><span><p>1. A new enzyme which catalyses the reversible condensation of pyruvate and glyoxylate to form γ-hydroxy-α-ketoglutarate was purified in excess of 120-fold from rat-liver acetone powder.</p></span></li><li><span>2.</span><span><p>2. The enzyme was specific for glyoxylate and pyruvate. Condensation could not be demonstrated between other aldehydic acids and keto acids which were tested, distinguishing this enzyme from the formaldehyde and pyruvate condensing enzyme (2-oxo-4-hydroxybutyrate formaldehyde-lyase, EC 4.1.2.1) and the cleavage enzyme of γ-hydroxyglutamate (4-hydroxyglutamate glyoxylate-lyase). The apparent <em>K</em><sub>m</sub> values (at optimal pH, 7.5) for pyruvate, glyoxylate and γ-hydroxy-α-ketoglutarate were 10 mM, 0.43 nM and 1.33 mM, respectively. The equilibrium facors the biosynthesis of γ-hydroxy-α-ketoglutarate.</p></span></li><li><span>3.</span><span><p>3. The product of the enzymic condensing reaction was isolated as the Ca salt and identified as γ-hydroxy-α-ketoglutaric acid from its chemical properties.</p></span></li><li><span>4.</span><span><p>4. On the basis of the experimental findings, the possible metabolic pathways of pyruvate, glyoxylate and γ-hydroxyglutamate (the main oxidation product of <span>L</span>-hydroxyproline) and the regulating role of glyoxylate for the tricarboxylic acid cycle were discussed.</p></span></li></ul></div>","PeriodicalId":94301,"journal":{"name":"Biochimica et biophysica acta","volume":"78 4","pages":"Pages 617-628"},"PeriodicalIF":0.0000,"publicationDate":"1963-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0006-3002(63)91027-8","citationCount":"25","resultStr":"{\"title\":\"The metabolism of γ-hydroxyglutamate in rat liver I. Enzymic synthesis of γ-hydroxy-α-ketoglutarate from pyruvate and glyoxylate\",\"authors\":\"Kazuoki Kuratomi, Keiko Fukunaga\",\"doi\":\"10.1016/0006-3002(63)91027-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p></p><ul><li><span>1.</span><span><p>1. A new enzyme which catalyses the reversible condensation of pyruvate and glyoxylate to form γ-hydroxy-α-ketoglutarate was purified in excess of 120-fold from rat-liver acetone powder.</p></span></li><li><span>2.</span><span><p>2. The enzyme was specific for glyoxylate and pyruvate. Condensation could not be demonstrated between other aldehydic acids and keto acids which were tested, distinguishing this enzyme from the formaldehyde and pyruvate condensing enzyme (2-oxo-4-hydroxybutyrate formaldehyde-lyase, EC 4.1.2.1) and the cleavage enzyme of γ-hydroxyglutamate (4-hydroxyglutamate glyoxylate-lyase). The apparent <em>K</em><sub>m</sub> values (at optimal pH, 7.5) for pyruvate, glyoxylate and γ-hydroxy-α-ketoglutarate were 10 mM, 0.43 nM and 1.33 mM, respectively. The equilibrium facors the biosynthesis of γ-hydroxy-α-ketoglutarate.</p></span></li><li><span>3.</span><span><p>3. The product of the enzymic condensing reaction was isolated as the Ca salt and identified as γ-hydroxy-α-ketoglutaric acid from its chemical properties.</p></span></li><li><span>4.</span><span><p>4. On the basis of the experimental findings, the possible metabolic pathways of pyruvate, glyoxylate and γ-hydroxyglutamate (the main oxidation product of <span>L</span>-hydroxyproline) and the regulating role of glyoxylate for the tricarboxylic acid cycle were discussed.</p></span></li></ul></div>\",\"PeriodicalId\":94301,\"journal\":{\"name\":\"Biochimica et biophysica acta\",\"volume\":\"78 4\",\"pages\":\"Pages 617-628\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1963-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0006-3002(63)91027-8\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0006300263910278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0006300263910278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The metabolism of γ-hydroxyglutamate in rat liver I. Enzymic synthesis of γ-hydroxy-α-ketoglutarate from pyruvate and glyoxylate
1.
1. A new enzyme which catalyses the reversible condensation of pyruvate and glyoxylate to form γ-hydroxy-α-ketoglutarate was purified in excess of 120-fold from rat-liver acetone powder.
2.
2. The enzyme was specific for glyoxylate and pyruvate. Condensation could not be demonstrated between other aldehydic acids and keto acids which were tested, distinguishing this enzyme from the formaldehyde and pyruvate condensing enzyme (2-oxo-4-hydroxybutyrate formaldehyde-lyase, EC 4.1.2.1) and the cleavage enzyme of γ-hydroxyglutamate (4-hydroxyglutamate glyoxylate-lyase). The apparent Km values (at optimal pH, 7.5) for pyruvate, glyoxylate and γ-hydroxy-α-ketoglutarate were 10 mM, 0.43 nM and 1.33 mM, respectively. The equilibrium facors the biosynthesis of γ-hydroxy-α-ketoglutarate.
3.
3. The product of the enzymic condensing reaction was isolated as the Ca salt and identified as γ-hydroxy-α-ketoglutaric acid from its chemical properties.
4.
4. On the basis of the experimental findings, the possible metabolic pathways of pyruvate, glyoxylate and γ-hydroxyglutamate (the main oxidation product of L-hydroxyproline) and the regulating role of glyoxylate for the tricarboxylic acid cycle were discussed.