{"title":"琥珀酸连接的烟酰胺-腺嘌呤二核苷酸还原与亚线粒体颗粒中还原性四甲基-对苯二胺的有氧氧化耦合","authors":"Ivar Vallin, Hans Löw","doi":"10.1016/0926-6569(64)90004-5","DOIUrl":null,"url":null,"abstract":"<div><p>The energy-dependent reduction of NAD<sup>+</sup> by succinate catalyzed by submitochondrial particles derived from beef heart is demonstrated to be supported energetically not only by the addition of ATP but also by a high-energy intermediate generated by the flow of electrons through the cytochrome oxidase portion of the respiratory chain. As substrate for the energy generation is used ascorbate and tetramethyl-<em>p</em>-phenylenediamine. Phenazinemethosulfate but not cytochrome <em>c</em> can replace the phenylenediamine. The reduction does not require the addition of Mg<sup>2+</sup>, phosphate or nucleotides, it is not inhibited by EDTA or oligomycin and by arsenate only in the absence of oligomycin, when the generated high-energy intermediate is the energy source. Rotenone is inhibitory whereas antimycin A is an obligatory addition to avoid reoxidation of the formed NADH.</p></div>","PeriodicalId":100170,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects","volume":"92 3","pages":"Pages 446-457"},"PeriodicalIF":0.0000,"publicationDate":"1964-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6569(64)90004-5","citationCount":"17","resultStr":"{\"title\":\"Succinate-linked nicotinamide-adenine dinucleotide reduction coupled with the aerobic oxidation of reduced tetramethyl-p-phenylenediamine in submitochondrial particles\",\"authors\":\"Ivar Vallin, Hans Löw\",\"doi\":\"10.1016/0926-6569(64)90004-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The energy-dependent reduction of NAD<sup>+</sup> by succinate catalyzed by submitochondrial particles derived from beef heart is demonstrated to be supported energetically not only by the addition of ATP but also by a high-energy intermediate generated by the flow of electrons through the cytochrome oxidase portion of the respiratory chain. As substrate for the energy generation is used ascorbate and tetramethyl-<em>p</em>-phenylenediamine. Phenazinemethosulfate but not cytochrome <em>c</em> can replace the phenylenediamine. The reduction does not require the addition of Mg<sup>2+</sup>, phosphate or nucleotides, it is not inhibited by EDTA or oligomycin and by arsenate only in the absence of oligomycin, when the generated high-energy intermediate is the energy source. Rotenone is inhibitory whereas antimycin A is an obligatory addition to avoid reoxidation of the formed NADH.</p></div>\",\"PeriodicalId\":100170,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects\",\"volume\":\"92 3\",\"pages\":\"Pages 446-457\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1964-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0926-6569(64)90004-5\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0926656964900045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0926656964900045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Succinate-linked nicotinamide-adenine dinucleotide reduction coupled with the aerobic oxidation of reduced tetramethyl-p-phenylenediamine in submitochondrial particles
The energy-dependent reduction of NAD+ by succinate catalyzed by submitochondrial particles derived from beef heart is demonstrated to be supported energetically not only by the addition of ATP but also by a high-energy intermediate generated by the flow of electrons through the cytochrome oxidase portion of the respiratory chain. As substrate for the energy generation is used ascorbate and tetramethyl-p-phenylenediamine. Phenazinemethosulfate but not cytochrome c can replace the phenylenediamine. The reduction does not require the addition of Mg2+, phosphate or nucleotides, it is not inhibited by EDTA or oligomycin and by arsenate only in the absence of oligomycin, when the generated high-energy intermediate is the energy source. Rotenone is inhibitory whereas antimycin A is an obligatory addition to avoid reoxidation of the formed NADH.