{"title":"一种新的蛋白质折叠特征指纹图谱。","authors":"Mihaly Mezei","doi":"10.1093/protein/gzg100","DOIUrl":null,"url":null,"abstract":"<p><p>A novel fingerprint, defined without the use of distances, is introduced to characterize protein folds. It is of the form of binary matrices whose elements are defined by angles between the C=O direction, the backbone axis and the line connecting the alpha-carbons of the various residues. It is shown that matches in the fingerprint matrices correspond to low r.m.s.d.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg100","citationCount":"7","resultStr":"{\"title\":\"A novel fingerprint for the characterization of protein folds.\",\"authors\":\"Mihaly Mezei\",\"doi\":\"10.1093/protein/gzg100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel fingerprint, defined without the use of distances, is introduced to characterize protein folds. It is of the form of binary matrices whose elements are defined by angles between the C=O direction, the backbone axis and the line connecting the alpha-carbons of the various residues. It is shown that matches in the fingerprint matrices correspond to low r.m.s.d.</p>\",\"PeriodicalId\":20902,\"journal\":{\"name\":\"Protein engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/protein/gzg100\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzg100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel fingerprint for the characterization of protein folds.
A novel fingerprint, defined without the use of distances, is introduced to characterize protein folds. It is of the form of binary matrices whose elements are defined by angles between the C=O direction, the backbone axis and the line connecting the alpha-carbons of the various residues. It is shown that matches in the fingerprint matrices correspond to low r.m.s.d.