Kinetoplastida 的能量代谢及其分区的演变。

Véronique Hannaert, Frédéric Bringaud, Fred R Opperdoes, Paul AM Michels
{"title":"Kinetoplastida 的能量代谢及其分区的演变。","authors":"Véronique Hannaert, Frédéric Bringaud, Fred R Opperdoes, Paul AM Michels","doi":"10.1186/1475-9292-2-11","DOIUrl":null,"url":null,"abstract":"<p><p>Kinetoplastida are protozoan organisms that probably diverged early in evolution from other eukaryotes. They are characterized by a number of unique features with respect to their energy and carbohydrate metabolism. These organisms possess peculiar peroxisomes, called glycosomes, which play a central role in this metabolism; the organelles harbour enzymes of several catabolic and anabolic routes, including major parts of the glycolytic and pentosephosphate pathways. The kinetoplastid mitochondrion is also unusual with regard to both its structural and functional properties.In this review, we describe the unique compartmentation of metabolism in Kinetoplastida and the metabolic properties resulting from this compartmentation. We discuss the evidence for our recently proposed hypothesis that a common ancestor of Kinetoplastida and Euglenida acquired a photosynthetic alga as an endosymbiont, contrary to the earlier notion that this event occurred at a later stage of evolution, in the Euglenida lineage alone. The endosymbiont was subsequently lost from the kinetoplastid lineage but, during that process, some of its pathways of energy and carbohydrate metabolism were sequestered in the kinetoplastid peroxisomes, which consequently became glycosomes. The evolution of the kinetoplastid glycosomes and the possible selective advantages of these organelles for Kinetoplastida are discussed. We propose that the possession of glycosomes provided metabolic flexibility that has been important for the organisms to adapt easily to changing environmental conditions. It is likely that metabolic flexibility has been an important selective advantage for many kinetoplastid species during their evolution into the highly successful parasites today found in many divergent taxonomic groups.Also addressed is the evolution of the kinetoplastid mitochondrion, from a supposedly pluripotent organelle, attributed to a single endosymbiotic event that resulted in all mitochondria and hydrogenosomes of extant eukaryotes. Furthermore, indications are presented that Kinetoplastida may have acquired other enzymes of energy and carbohydrate metabolism by various lateral gene transfer events different from those that involved the algal- and alpha-proteobacterial-like endosymbionts responsible for the respective formation of the glycosomes and mitochondria.</p>","PeriodicalId":17853,"journal":{"name":"Kinetoplastid Biology and Disease","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317351/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolution of energy metabolism and its compartmentation in Kinetoplastida.\",\"authors\":\"Véronique Hannaert, Frédéric Bringaud, Fred R Opperdoes, Paul AM Michels\",\"doi\":\"10.1186/1475-9292-2-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kinetoplastida are protozoan organisms that probably diverged early in evolution from other eukaryotes. They are characterized by a number of unique features with respect to their energy and carbohydrate metabolism. These organisms possess peculiar peroxisomes, called glycosomes, which play a central role in this metabolism; the organelles harbour enzymes of several catabolic and anabolic routes, including major parts of the glycolytic and pentosephosphate pathways. The kinetoplastid mitochondrion is also unusual with regard to both its structural and functional properties.In this review, we describe the unique compartmentation of metabolism in Kinetoplastida and the metabolic properties resulting from this compartmentation. We discuss the evidence for our recently proposed hypothesis that a common ancestor of Kinetoplastida and Euglenida acquired a photosynthetic alga as an endosymbiont, contrary to the earlier notion that this event occurred at a later stage of evolution, in the Euglenida lineage alone. The endosymbiont was subsequently lost from the kinetoplastid lineage but, during that process, some of its pathways of energy and carbohydrate metabolism were sequestered in the kinetoplastid peroxisomes, which consequently became glycosomes. The evolution of the kinetoplastid glycosomes and the possible selective advantages of these organelles for Kinetoplastida are discussed. We propose that the possession of glycosomes provided metabolic flexibility that has been important for the organisms to adapt easily to changing environmental conditions. It is likely that metabolic flexibility has been an important selective advantage for many kinetoplastid species during their evolution into the highly successful parasites today found in many divergent taxonomic groups.Also addressed is the evolution of the kinetoplastid mitochondrion, from a supposedly pluripotent organelle, attributed to a single endosymbiotic event that resulted in all mitochondria and hydrogenosomes of extant eukaryotes. Furthermore, indications are presented that Kinetoplastida may have acquired other enzymes of energy and carbohydrate metabolism by various lateral gene transfer events different from those that involved the algal- and alpha-proteobacterial-like endosymbionts responsible for the respective formation of the glycosomes and mitochondria.</p>\",\"PeriodicalId\":17853,\"journal\":{\"name\":\"Kinetoplastid Biology and Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317351/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetoplastid Biology and Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1475-9292-2-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetoplastid Biology and Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1475-9292-2-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

原生动物(Kinetoplastida)是一种原生生物,可能是在进化早期从其他真核生物中分化出来的。它们在能量和碳水化合物代谢方面有许多独特之处。这些生物拥有奇特的过氧物酶体(称为糖体),在新陈代谢中发挥着核心作用;这些细胞器中含有多种分解代谢和合成代谢途径的酶,包括糖酵解途径和磷酸戊糖途径的主要部分。在这篇综述中,我们描述了奇梭菌新陈代谢的独特分区以及这种分区所产生的新陈代谢特性。我们讨论了最近提出的假说的证据,即 Kinetoplastida 和 Euglenida 的共同祖先获得了一种光合藻类作为内共生体,这与早先的观点相反,即这一事件发生在进化的较晚阶段,仅发生在 Euglenida 系。随后,内共生体从动点细胞系中消失,但在这一过程中,其能量和碳水化合物代谢的某些途径被封存在动点细胞过氧体中,从而变成了糖体。本文讨论了动点虫糖体的进化过程以及这些细胞器对动点虫可能具有的选择性优势。我们认为,糖体的存在提供了新陈代谢的灵活性,这对生物轻松适应不断变化的环境条件非常重要。在进化成今天在许多不同分类群中发现的非常成功的寄生虫的过程中,新陈代谢的灵活性很可能是许多内生寄生虫物种的一个重要选择性优势。我们还探讨了内生寄生虫线粒体的进化过程,线粒体从一个假定的多能细胞器进化而来,归因于一次内共生事件,该事件导致了现存真核生物的所有线粒体和氢体。此外,有迹象表明,Kinetoplastida 可能已经通过各种横向基因转移事件获得了能量和碳水化合物代谢的其他酶,这些事件不同于藻类和甲型蛋白细菌类内生共生体负责各自形成糖体和线粒体的事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of energy metabolism and its compartmentation in Kinetoplastida.

Kinetoplastida are protozoan organisms that probably diverged early in evolution from other eukaryotes. They are characterized by a number of unique features with respect to their energy and carbohydrate metabolism. These organisms possess peculiar peroxisomes, called glycosomes, which play a central role in this metabolism; the organelles harbour enzymes of several catabolic and anabolic routes, including major parts of the glycolytic and pentosephosphate pathways. The kinetoplastid mitochondrion is also unusual with regard to both its structural and functional properties.In this review, we describe the unique compartmentation of metabolism in Kinetoplastida and the metabolic properties resulting from this compartmentation. We discuss the evidence for our recently proposed hypothesis that a common ancestor of Kinetoplastida and Euglenida acquired a photosynthetic alga as an endosymbiont, contrary to the earlier notion that this event occurred at a later stage of evolution, in the Euglenida lineage alone. The endosymbiont was subsequently lost from the kinetoplastid lineage but, during that process, some of its pathways of energy and carbohydrate metabolism were sequestered in the kinetoplastid peroxisomes, which consequently became glycosomes. The evolution of the kinetoplastid glycosomes and the possible selective advantages of these organelles for Kinetoplastida are discussed. We propose that the possession of glycosomes provided metabolic flexibility that has been important for the organisms to adapt easily to changing environmental conditions. It is likely that metabolic flexibility has been an important selective advantage for many kinetoplastid species during their evolution into the highly successful parasites today found in many divergent taxonomic groups.Also addressed is the evolution of the kinetoplastid mitochondrion, from a supposedly pluripotent organelle, attributed to a single endosymbiotic event that resulted in all mitochondria and hydrogenosomes of extant eukaryotes. Furthermore, indications are presented that Kinetoplastida may have acquired other enzymes of energy and carbohydrate metabolism by various lateral gene transfer events different from those that involved the algal- and alpha-proteobacterial-like endosymbionts responsible for the respective formation of the glycosomes and mitochondria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consultation meeting on the development of therapeutic vaccines for post kala azar dermal leishmaniasis. In silico, biologically-inspired modelling of genomic variation generation in surface proteins of Trypanosoma cruzi. Genetic diversity of Leishmania amazonensis strains isolated in northeastern Brazil as revealed by DNA sequencing, PCR-based analyses and molecular karyotyping. Dynamics of infection and competition between two strains of Trypanosoma brucei brucei in the tsetse fly observed using fluorescent markers. Consultative meeting to develop a strategy for treatment of cutaneous leishmaniasis. Institute Pasteur, Paris. 13-15 June, 2006.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1