{"title":"黑曲霉中心碳代谢的重建。","authors":"Helga David, Mats Akesson, Jens Nielsen","doi":"10.1046/j.1432-1033.2003.03798.x","DOIUrl":null,"url":null,"abstract":"<p><p>The topology of central carbon metabolism of Aspergillus niger was identified and the metabolic network reconstructed, by integrating genomic, biochemical and physiological information available for this microorganism and other related fungi. The reconstructed network may serve as a valuable database for annotation of genes identified in future genome sequencing projects on aspergilli. Based on the metabolic reconstruction, a stoichiometric model was set up that includes 284 metabolites and 335 reactions, of which 268 represent biochemical conversions and 67 represent transport processes between the different intracellular compartments and between the cell and the extracellular medium. The stoichiometry of the metabolic reactions was used in combination with biosynthetic requirements for growth and pseudo-steady state mass balances over intracellular metabolites for the quantification of metabolic fluxes using metabolite balancing. This framework was employed to perform an in silico characterisation of the phenotypic behaviour of A. niger grown on different carbon sources. The effects on growth of single reaction deletions were assessed and essential biochemical reactions were identified for different carbon sources. Furthermore, application of the stoichiometric model for assessing the metabolic capabilities of A. niger to produce metabolites was evaluated by using succinate production as a case study.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 21","pages":"4243-53"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03798.x","citationCount":"103","resultStr":"{\"title\":\"Reconstruction of the central carbon metabolism of Aspergillus niger.\",\"authors\":\"Helga David, Mats Akesson, Jens Nielsen\",\"doi\":\"10.1046/j.1432-1033.2003.03798.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The topology of central carbon metabolism of Aspergillus niger was identified and the metabolic network reconstructed, by integrating genomic, biochemical and physiological information available for this microorganism and other related fungi. The reconstructed network may serve as a valuable database for annotation of genes identified in future genome sequencing projects on aspergilli. Based on the metabolic reconstruction, a stoichiometric model was set up that includes 284 metabolites and 335 reactions, of which 268 represent biochemical conversions and 67 represent transport processes between the different intracellular compartments and between the cell and the extracellular medium. The stoichiometry of the metabolic reactions was used in combination with biosynthetic requirements for growth and pseudo-steady state mass balances over intracellular metabolites for the quantification of metabolic fluxes using metabolite balancing. This framework was employed to perform an in silico characterisation of the phenotypic behaviour of A. niger grown on different carbon sources. The effects on growth of single reaction deletions were assessed and essential biochemical reactions were identified for different carbon sources. Furthermore, application of the stoichiometric model for assessing the metabolic capabilities of A. niger to produce metabolites was evaluated by using succinate production as a case study.</p>\",\"PeriodicalId\":11817,\"journal\":{\"name\":\"European journal of biochemistry\",\"volume\":\"270 21\",\"pages\":\"4243-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03798.x\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1046/j.1432-1033.2003.03798.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/j.1432-1033.2003.03798.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconstruction of the central carbon metabolism of Aspergillus niger.
The topology of central carbon metabolism of Aspergillus niger was identified and the metabolic network reconstructed, by integrating genomic, biochemical and physiological information available for this microorganism and other related fungi. The reconstructed network may serve as a valuable database for annotation of genes identified in future genome sequencing projects on aspergilli. Based on the metabolic reconstruction, a stoichiometric model was set up that includes 284 metabolites and 335 reactions, of which 268 represent biochemical conversions and 67 represent transport processes between the different intracellular compartments and between the cell and the extracellular medium. The stoichiometry of the metabolic reactions was used in combination with biosynthetic requirements for growth and pseudo-steady state mass balances over intracellular metabolites for the quantification of metabolic fluxes using metabolite balancing. This framework was employed to perform an in silico characterisation of the phenotypic behaviour of A. niger grown on different carbon sources. The effects on growth of single reaction deletions were assessed and essential biochemical reactions were identified for different carbon sources. Furthermore, application of the stoichiometric model for assessing the metabolic capabilities of A. niger to produce metabolites was evaluated by using succinate production as a case study.