{"title":"非小细胞肺癌的血管生成。一个新的治疗目标。","authors":"Tracy E Kim, John R Murren","doi":"10.1007/BF03256626","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is cured with surgery in a minority of affected persons. Chemotherapy and radiation can palliate and extend survival of patients with disease not amenable to surgery. Consequently, new treatment options are urgently needed. In the era of molecularly targeted therapeutics, the recent direction in cancer research has been to identify and modulate specific events in tumorigenesis. Angiogenesis, or new vessel formation, is one such event elucidated to be fundamental to the development, growth, and metastasis of cancers and is one of the characteristics that differentiates tumor from host. Thus, targeting of tumor neovasculature continues to generate tremendous enthusiasm and effort in drug development. Extensive research into the role of angiogenesis in NSCLC has produced a host of novel targets; their potential inhibitors, now numbering over 40, are in various phases of clinical testing around the world. The current lead compounds include inhibitors of matrix metalloproteinases, angiogenic growth factors and their receptor tyrosine kinases. Despite their impressive activity in animal models, definitive evidence of their antitumor activity in humans is yet to be established. We face several challenges as we look to advance the field of antiangiogenesis for the treatment of cancer, namely, the need for a better understanding of the optimal timing and dosing of antiangiogenic agents, the validation of imaging and quantification methods of tumor angiogenesis, and a new clinical trials design for a more expedient evaluation of novel cytostatic target modulators.</p>","PeriodicalId":86933,"journal":{"name":"American journal of respiratory medicine : drugs, devices, and other interventions","volume":"1 5","pages":"325-38"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF03256626","citationCount":"48","resultStr":"{\"title\":\"Angiogenesis in non-small cell lung cancer. A new target for therapy.\",\"authors\":\"Tracy E Kim, John R Murren\",\"doi\":\"10.1007/BF03256626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-small cell lung cancer (NSCLC) is cured with surgery in a minority of affected persons. Chemotherapy and radiation can palliate and extend survival of patients with disease not amenable to surgery. Consequently, new treatment options are urgently needed. In the era of molecularly targeted therapeutics, the recent direction in cancer research has been to identify and modulate specific events in tumorigenesis. Angiogenesis, or new vessel formation, is one such event elucidated to be fundamental to the development, growth, and metastasis of cancers and is one of the characteristics that differentiates tumor from host. Thus, targeting of tumor neovasculature continues to generate tremendous enthusiasm and effort in drug development. Extensive research into the role of angiogenesis in NSCLC has produced a host of novel targets; their potential inhibitors, now numbering over 40, are in various phases of clinical testing around the world. The current lead compounds include inhibitors of matrix metalloproteinases, angiogenic growth factors and their receptor tyrosine kinases. Despite their impressive activity in animal models, definitive evidence of their antitumor activity in humans is yet to be established. We face several challenges as we look to advance the field of antiangiogenesis for the treatment of cancer, namely, the need for a better understanding of the optimal timing and dosing of antiangiogenic agents, the validation of imaging and quantification methods of tumor angiogenesis, and a new clinical trials design for a more expedient evaluation of novel cytostatic target modulators.</p>\",\"PeriodicalId\":86933,\"journal\":{\"name\":\"American journal of respiratory medicine : drugs, devices, and other interventions\",\"volume\":\"1 5\",\"pages\":\"325-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF03256626\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of respiratory medicine : drugs, devices, and other interventions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF03256626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of respiratory medicine : drugs, devices, and other interventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF03256626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Angiogenesis in non-small cell lung cancer. A new target for therapy.
Non-small cell lung cancer (NSCLC) is cured with surgery in a minority of affected persons. Chemotherapy and radiation can palliate and extend survival of patients with disease not amenable to surgery. Consequently, new treatment options are urgently needed. In the era of molecularly targeted therapeutics, the recent direction in cancer research has been to identify and modulate specific events in tumorigenesis. Angiogenesis, or new vessel formation, is one such event elucidated to be fundamental to the development, growth, and metastasis of cancers and is one of the characteristics that differentiates tumor from host. Thus, targeting of tumor neovasculature continues to generate tremendous enthusiasm and effort in drug development. Extensive research into the role of angiogenesis in NSCLC has produced a host of novel targets; their potential inhibitors, now numbering over 40, are in various phases of clinical testing around the world. The current lead compounds include inhibitors of matrix metalloproteinases, angiogenic growth factors and their receptor tyrosine kinases. Despite their impressive activity in animal models, definitive evidence of their antitumor activity in humans is yet to be established. We face several challenges as we look to advance the field of antiangiogenesis for the treatment of cancer, namely, the need for a better understanding of the optimal timing and dosing of antiangiogenic agents, the validation of imaging and quantification methods of tumor angiogenesis, and a new clinical trials design for a more expedient evaluation of novel cytostatic target modulators.