Balaji M Rao, Andrew T Girvin, Thomas Ciardelli, Douglas A Lauffenburger, K Dane Wittrup
{"title":"具有增强α受体亚单位结合亲和力的白介素-2突变体。","authors":"Balaji M Rao, Andrew T Girvin, Thomas Ciardelli, Douglas A Lauffenburger, K Dane Wittrup","doi":"10.1093/protein/gzg111","DOIUrl":null,"url":null,"abstract":"<p><p>Stimulation of T-cells by IL-2 has been exploited for treatment of metastatic renal carcinoma and melanoma. However, a narrow therapeutic window delimited by negligible stimulation of T-cells at low picomolar concentrations and undesirable stimulation of NK cells at nanomolar concentrations hampers IL-2-based therapies. We hypothesized that increasing the affinity of IL-2 for IL-2Ralpha may create a class of IL-2 mutants with increased biological potency as compared with wild-type IL-2. Towards this end, we have screened libraries of mutated IL-2 displayed on the surface of yeast and isolated mutants with a 15-30-fold improved affinity for the IL-2Ralpha subunit. These mutants do not exhibit appreciably altered bioactivity at 0.5-5 pM in steady-state bioassays, concentrations well below the IL-2Ralpha equilibrium binding constant for both the mutant and wild-type IL-2. A mutant was serendipitously identified that exhibited somewhat improved potency, perhaps via altered endocytic trafficking mechanisms described previously.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":"16 12","pages":"1081-7"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg111","citationCount":"54","resultStr":"{\"title\":\"Interleukin-2 mutants with enhanced alpha-receptor subunit binding affinity.\",\"authors\":\"Balaji M Rao, Andrew T Girvin, Thomas Ciardelli, Douglas A Lauffenburger, K Dane Wittrup\",\"doi\":\"10.1093/protein/gzg111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stimulation of T-cells by IL-2 has been exploited for treatment of metastatic renal carcinoma and melanoma. However, a narrow therapeutic window delimited by negligible stimulation of T-cells at low picomolar concentrations and undesirable stimulation of NK cells at nanomolar concentrations hampers IL-2-based therapies. We hypothesized that increasing the affinity of IL-2 for IL-2Ralpha may create a class of IL-2 mutants with increased biological potency as compared with wild-type IL-2. Towards this end, we have screened libraries of mutated IL-2 displayed on the surface of yeast and isolated mutants with a 15-30-fold improved affinity for the IL-2Ralpha subunit. These mutants do not exhibit appreciably altered bioactivity at 0.5-5 pM in steady-state bioassays, concentrations well below the IL-2Ralpha equilibrium binding constant for both the mutant and wild-type IL-2. A mutant was serendipitously identified that exhibited somewhat improved potency, perhaps via altered endocytic trafficking mechanisms described previously.</p>\",\"PeriodicalId\":20902,\"journal\":{\"name\":\"Protein engineering\",\"volume\":\"16 12\",\"pages\":\"1081-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/protein/gzg111\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzg111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interleukin-2 mutants with enhanced alpha-receptor subunit binding affinity.
Stimulation of T-cells by IL-2 has been exploited for treatment of metastatic renal carcinoma and melanoma. However, a narrow therapeutic window delimited by negligible stimulation of T-cells at low picomolar concentrations and undesirable stimulation of NK cells at nanomolar concentrations hampers IL-2-based therapies. We hypothesized that increasing the affinity of IL-2 for IL-2Ralpha may create a class of IL-2 mutants with increased biological potency as compared with wild-type IL-2. Towards this end, we have screened libraries of mutated IL-2 displayed on the surface of yeast and isolated mutants with a 15-30-fold improved affinity for the IL-2Ralpha subunit. These mutants do not exhibit appreciably altered bioactivity at 0.5-5 pM in steady-state bioassays, concentrations well below the IL-2Ralpha equilibrium binding constant for both the mutant and wild-type IL-2. A mutant was serendipitously identified that exhibited somewhat improved potency, perhaps via altered endocytic trafficking mechanisms described previously.