基于模型的诱变以提高抗体的对映选择性分离特性。

T K Nevanen, M-L Hellman, N Munck, G Wohlfahrt, A Koivula, H Söderlund
{"title":"基于模型的诱变以提高抗体的对映选择性分离特性。","authors":"T K Nevanen,&nbsp;M-L Hellman,&nbsp;N Munck,&nbsp;G Wohlfahrt,&nbsp;A Koivula,&nbsp;H Söderlund","doi":"10.1093/protein/gzg118","DOIUrl":null,"url":null,"abstract":"<p><p>The binding affinity and specificity of recombinant antibodies can be modified by site-directed mutagenesis. Here we have used molecular modelling of the variable domains of an enantiospecific antibody fragment to fine-tune its affinity so it is more suitable for the fractionation of the drug enantiomers. We have shown earlier that the Fab fragment of this antibody specifically recognizes one enantiomer from the racemic mixture of a medical drug and that it can be used for the fractionation of these enantiomers by affinity chromatography. However, the affinity was unnecessarily high, requiring harsh elution conditions to release the bound enantiomer. Thus, the continuous use of the antibody affinity columns was impossible. We made a homology model of the antibody and designed mutations to the antigen-binding site to decrease the affinity. Four out of five point mutations showed decreased affinity for the hapten. Two of the mutations were also combined to construct a double mutant. The affinity columns made using one of the single mutants with lowered affinity and the double mutant were capable of multiple rounds of enantioseparation.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg118","citationCount":"15","resultStr":"{\"title\":\"Model-based mutagenesis to improve the enantioselective fractionation properties of an antibody.\",\"authors\":\"T K Nevanen,&nbsp;M-L Hellman,&nbsp;N Munck,&nbsp;G Wohlfahrt,&nbsp;A Koivula,&nbsp;H Söderlund\",\"doi\":\"10.1093/protein/gzg118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The binding affinity and specificity of recombinant antibodies can be modified by site-directed mutagenesis. Here we have used molecular modelling of the variable domains of an enantiospecific antibody fragment to fine-tune its affinity so it is more suitable for the fractionation of the drug enantiomers. We have shown earlier that the Fab fragment of this antibody specifically recognizes one enantiomer from the racemic mixture of a medical drug and that it can be used for the fractionation of these enantiomers by affinity chromatography. However, the affinity was unnecessarily high, requiring harsh elution conditions to release the bound enantiomer. Thus, the continuous use of the antibody affinity columns was impossible. We made a homology model of the antibody and designed mutations to the antigen-binding site to decrease the affinity. Four out of five point mutations showed decreased affinity for the hapten. Two of the mutations were also combined to construct a double mutant. The affinity columns made using one of the single mutants with lowered affinity and the double mutant were capable of multiple rounds of enantioseparation.</p>\",\"PeriodicalId\":20902,\"journal\":{\"name\":\"Protein engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/protein/gzg118\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzg118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

重组抗体的结合亲和力和特异性可以通过定点诱变进行修饰。在这里,我们使用分子模型的可变域的对映体特异性抗体片段微调其亲和力,使其更适合药物对映体的分离。我们之前已经证明,该抗体的Fab片段可以特异性地识别药物外消旋混合物中的一种对映体,并且可以通过亲和色谱法对这些对映体进行分离。然而,亲和力过高,需要苛刻的洗脱条件才能释放结合的对映体。因此,不可能连续使用抗体亲和柱。我们建立了抗体的同源性模型,并设计了抗原结合位点的突变来降低亲和力。5个点突变中有4个显示对半抗原的亲和力降低。其中两个突变也被结合起来构建了一个双突变体。用低亲和力的单突变体和双突变体制成的亲和柱能够进行多轮对映体分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-based mutagenesis to improve the enantioselective fractionation properties of an antibody.

The binding affinity and specificity of recombinant antibodies can be modified by site-directed mutagenesis. Here we have used molecular modelling of the variable domains of an enantiospecific antibody fragment to fine-tune its affinity so it is more suitable for the fractionation of the drug enantiomers. We have shown earlier that the Fab fragment of this antibody specifically recognizes one enantiomer from the racemic mixture of a medical drug and that it can be used for the fractionation of these enantiomers by affinity chromatography. However, the affinity was unnecessarily high, requiring harsh elution conditions to release the bound enantiomer. Thus, the continuous use of the antibody affinity columns was impossible. We made a homology model of the antibody and designed mutations to the antigen-binding site to decrease the affinity. Four out of five point mutations showed decreased affinity for the hapten. Two of the mutations were also combined to construct a double mutant. The affinity columns made using one of the single mutants with lowered affinity and the double mutant were capable of multiple rounds of enantioseparation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Novel Cellular Imaging Tools Using Protein Engineering High‐Throughput Mass Spectrometry Complements Protein Engineering Programming Novel Cancer Therapeutics: Design Principles for Chimeric Antigen Receptors Recent Advances in Cell Surface Display Technologies for Directed Protein Evolution Protein Engineering by Efficient Sequence Space Exploration Through Combination of Directed Evolution and Computational Design Methodologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1