静态和动态骨形成中的骨细胞树突发生:一项超微结构研究。

Carla Palumbo, Marzia Ferretti, Gastone Marotti
{"title":"静态和动态骨形成中的骨细胞树突发生:一项超微结构研究。","authors":"Carla Palumbo,&nbsp;Marzia Ferretti,&nbsp;Gastone Marotti","doi":"10.1002/ar.a.20032","DOIUrl":null,"url":null,"abstract":"<p><p>The present ultrastructural investigation into osteocyte dendrogenesis represents a continuation of a previous study (Ferretti et al., Anat. Embryol., 2002; 206:21-29), in which we pointed out that, during intramembranous ossification, the well-known dynamic bone formation (DBF), performed by migrating osteoblast laminae, is preceded by static bone formation (SBF), in which cords of stationary osteoblasts transform into osteocytes in the same site where they differentiated. The research was carried out on the perichondral center of ossification surrounding the mid shaft level of various long bones of chick embryos and newborn rabbits. Transmission electron microscope observations showed that the formation of osteocyte dendrites is quite different in the two types of osteogenesis, mainly depending on whether or not osteoblast movement occurs. In DBF, osteoblasts transform into small ovoidal/ellipsoidal osteocytes and their dendrites form in an asynchronous and asymmetrical manner in concomitance with, and depending on, the advancing mineralizing surface and the receding osteogenic laminae. In SBF, stationary osteoblasts give rise to big globous osteocytes, located inside confluent lacunae, with short and symmetrical dendrites that can radiate simultaneously all around their cell body because they are completely surrounded by unmineralized matrix. Contacts and gap junctions were observed between all osteocytes (both SBF- and DBF-derived) and between osteocytes and osteoblasts. Finally, a continuous osteocyte network extends throughout the bone, regardless of its static or dynamic origin. This network has the characteristic of a functional syncytium, potentially capable of modulating, by wiring transmission, the cells of the osteogenic lineage covering the bone surfaces.</p>","PeriodicalId":85633,"journal":{"name":"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology","volume":"278 1","pages":"474-80"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ar.a.20032","citationCount":"76","resultStr":"{\"title\":\"Osteocyte dendrogenesis in static and dynamic bone formation: an ultrastructural study.\",\"authors\":\"Carla Palumbo,&nbsp;Marzia Ferretti,&nbsp;Gastone Marotti\",\"doi\":\"10.1002/ar.a.20032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present ultrastructural investigation into osteocyte dendrogenesis represents a continuation of a previous study (Ferretti et al., Anat. Embryol., 2002; 206:21-29), in which we pointed out that, during intramembranous ossification, the well-known dynamic bone formation (DBF), performed by migrating osteoblast laminae, is preceded by static bone formation (SBF), in which cords of stationary osteoblasts transform into osteocytes in the same site where they differentiated. The research was carried out on the perichondral center of ossification surrounding the mid shaft level of various long bones of chick embryos and newborn rabbits. Transmission electron microscope observations showed that the formation of osteocyte dendrites is quite different in the two types of osteogenesis, mainly depending on whether or not osteoblast movement occurs. In DBF, osteoblasts transform into small ovoidal/ellipsoidal osteocytes and their dendrites form in an asynchronous and asymmetrical manner in concomitance with, and depending on, the advancing mineralizing surface and the receding osteogenic laminae. In SBF, stationary osteoblasts give rise to big globous osteocytes, located inside confluent lacunae, with short and symmetrical dendrites that can radiate simultaneously all around their cell body because they are completely surrounded by unmineralized matrix. Contacts and gap junctions were observed between all osteocytes (both SBF- and DBF-derived) and between osteocytes and osteoblasts. Finally, a continuous osteocyte network extends throughout the bone, regardless of its static or dynamic origin. This network has the characteristic of a functional syncytium, potentially capable of modulating, by wiring transmission, the cells of the osteogenic lineage covering the bone surfaces.</p>\",\"PeriodicalId\":85633,\"journal\":{\"name\":\"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology\",\"volume\":\"278 1\",\"pages\":\"474-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/ar.a.20032\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ar.a.20032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.a.20032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

摘要

目前对骨细胞树突发生的超微结构研究是先前研究的延续(Ferretti等人,Anat。Embryol。, 2002;206:21-29),其中我们指出,在膜内骨化过程中,众所周知的动态骨形成(DBF)是由迁移的成骨细胞层完成的,在此之前是静态骨形成(SBF),在静态骨形成(SBF)中,固定的成骨细胞束在它们分化的同一部位转化为骨细胞。研究了鸡胚和新生兔各种长骨中轴水平周围的骨化中心。透射电镜观察显示,两种成骨类型中骨细胞树突的形成有很大差异,主要取决于成骨细胞是否发生运动。在DBF中,成骨细胞转变为小的卵形/椭球形骨细胞,其树突以不同步和不对称的方式形成,与矿化表面的推进和成骨层的后退同时发生,并依赖于此。在SBF中,静止的成骨细胞产生大的球状骨细胞,位于融合腔隙内,具有短而对称的树突,由于它们被未矿化的基质完全包围,可以同时向细胞体周围辐射。所有骨细胞之间(包括SBF和dbf来源)以及骨细胞和成骨细胞之间观察到接触和间隙连接。最后,一个连续的骨细胞网络延伸到整个骨骼,无论其静态或动态起源。该网络具有功能性合胞体的特征,可能能够通过布线传输来调节覆盖骨表面的成骨谱系细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Osteocyte dendrogenesis in static and dynamic bone formation: an ultrastructural study.

The present ultrastructural investigation into osteocyte dendrogenesis represents a continuation of a previous study (Ferretti et al., Anat. Embryol., 2002; 206:21-29), in which we pointed out that, during intramembranous ossification, the well-known dynamic bone formation (DBF), performed by migrating osteoblast laminae, is preceded by static bone formation (SBF), in which cords of stationary osteoblasts transform into osteocytes in the same site where they differentiated. The research was carried out on the perichondral center of ossification surrounding the mid shaft level of various long bones of chick embryos and newborn rabbits. Transmission electron microscope observations showed that the formation of osteocyte dendrites is quite different in the two types of osteogenesis, mainly depending on whether or not osteoblast movement occurs. In DBF, osteoblasts transform into small ovoidal/ellipsoidal osteocytes and their dendrites form in an asynchronous and asymmetrical manner in concomitance with, and depending on, the advancing mineralizing surface and the receding osteogenic laminae. In SBF, stationary osteoblasts give rise to big globous osteocytes, located inside confluent lacunae, with short and symmetrical dendrites that can radiate simultaneously all around their cell body because they are completely surrounded by unmineralized matrix. Contacts and gap junctions were observed between all osteocytes (both SBF- and DBF-derived) and between osteocytes and osteoblasts. Finally, a continuous osteocyte network extends throughout the bone, regardless of its static or dynamic origin. This network has the characteristic of a functional syncytium, potentially capable of modulating, by wiring transmission, the cells of the osteogenic lineage covering the bone surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The submicroscopic morphology of protoplasm. 1956. Cortical complexity in cetacean brains. Nature's experiments in brain diversity. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Aberrant retinal projections in congenitally deaf mice: how are phenotypic characteristics specified in development and evolution?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1