大鼠基底核的损伤破坏了食欲到厌恶的迁移学习。

A E Butt, J A Schultz, L L Arnold, E E Garman, C L George, P E Garraghty
{"title":"大鼠基底核的损伤破坏了食欲到厌恶的迁移学习。","authors":"A E Butt,&nbsp;J A Schultz,&nbsp;L L Arnold,&nbsp;E E Garman,&nbsp;C L George,&nbsp;P E Garraghty","doi":"10.1007/BF02688857","DOIUrl":null,"url":null,"abstract":"<p><p>Rats with selective lesions of the nucleus basalis magnocellularis (NBM) and sham-lesion control animals were tested in an operant appetitive-to-aversive transfer task. We hypothesized that NBM lesions would not affect performance in the appetitive phase, but that performance would be impaired during subsequent transfer to the aversive phase of the task. Additional groups of NBM lesion and control rats were tested in the avoidance condition only, where we hypothesized that NBM lesions would not disrupt performance. These hypotheses were based on the argument that the NBM is not necessary for simple association learning that does not tax attention. Both the appetitive phase of the transfer task and the avoidance only task depend only on simple associative learning and are argued not to tax attention. Consequently, performance in these tasks was predicted to be spared following NBM lesions. Complex, attention-demanding associative learning, however, is argued to depend on the NBM. Performance in the aversive phase of the transfer task is both attentionally demanding and associatively more complex than in either the appetitive or aversive tasks alone; thus, avoidance performance in the NBM lesion group was predicted to be impaired following transfer from prior appetitive conditioning. Results supported our hypotheses, with the NBM lesion group acquiring the appetitive response normally, but showing impaired performance following transfer to the aversive conditioning phase of the transfer task. Impairments were not attributable to disrupted avoidance learning per se, as avoidance behavior was normal in the NBM lesion group tested in the avoidance condition only.</p>","PeriodicalId":73397,"journal":{"name":"Integrative physiological and behavioral science : the official journal of the Pavlovian Society","volume":"38 4","pages":"253-71"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02688857","citationCount":"20","resultStr":"{\"title\":\"Lesions of the rat nucleus basalis magnocellularis disrupt appetitive-to-aversive transfer learning.\",\"authors\":\"A E Butt,&nbsp;J A Schultz,&nbsp;L L Arnold,&nbsp;E E Garman,&nbsp;C L George,&nbsp;P E Garraghty\",\"doi\":\"10.1007/BF02688857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rats with selective lesions of the nucleus basalis magnocellularis (NBM) and sham-lesion control animals were tested in an operant appetitive-to-aversive transfer task. We hypothesized that NBM lesions would not affect performance in the appetitive phase, but that performance would be impaired during subsequent transfer to the aversive phase of the task. Additional groups of NBM lesion and control rats were tested in the avoidance condition only, where we hypothesized that NBM lesions would not disrupt performance. These hypotheses were based on the argument that the NBM is not necessary for simple association learning that does not tax attention. Both the appetitive phase of the transfer task and the avoidance only task depend only on simple associative learning and are argued not to tax attention. Consequently, performance in these tasks was predicted to be spared following NBM lesions. Complex, attention-demanding associative learning, however, is argued to depend on the NBM. Performance in the aversive phase of the transfer task is both attentionally demanding and associatively more complex than in either the appetitive or aversive tasks alone; thus, avoidance performance in the NBM lesion group was predicted to be impaired following transfer from prior appetitive conditioning. Results supported our hypotheses, with the NBM lesion group acquiring the appetitive response normally, but showing impaired performance following transfer to the aversive conditioning phase of the transfer task. Impairments were not attributable to disrupted avoidance learning per se, as avoidance behavior was normal in the NBM lesion group tested in the avoidance condition only.</p>\",\"PeriodicalId\":73397,\"journal\":{\"name\":\"Integrative physiological and behavioral science : the official journal of the Pavlovian Society\",\"volume\":\"38 4\",\"pages\":\"253-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF02688857\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative physiological and behavioral science : the official journal of the Pavlovian Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02688857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative physiological and behavioral science : the official journal of the Pavlovian Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02688857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

研究了选择性大细胞基底核损伤大鼠和假损伤对照动物的操作性食欲-厌恶转移任务。我们假设NBM损伤不会影响食欲阶段的表现,但在随后的任务转移到厌恶阶段时,表现会受到损害。另外两组NBM损伤大鼠和对照大鼠仅在回避条件下进行测试,我们假设NBM损伤不会破坏表现。这些假设是基于这样一种观点,即NBM对于不需要集中注意力的简单联想学习是不必要的。转移任务的食欲阶段和回避任务都只依赖于简单的联想学习,并且被认为不需要注意。因此,预测NBM病变后,这些任务的表现可以幸免。然而,复杂的、需要注意的联想学习被认为是依赖于NBM的。在转移任务的厌恶阶段的表现既需要注意,又比单独的食欲或厌恶任务更复杂;因此,预测NBM病变组的回避行为在从先前的食欲条件转移后受损。结果支持了我们的假设,NBM损伤组获得了正常的食欲反应,但在转移到转移任务的厌恶条件反射阶段后表现受损。损伤不能归因于回避学习本身的中断,因为仅在回避条件下,NBM病变组的回避行为是正常的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lesions of the rat nucleus basalis magnocellularis disrupt appetitive-to-aversive transfer learning.

Rats with selective lesions of the nucleus basalis magnocellularis (NBM) and sham-lesion control animals were tested in an operant appetitive-to-aversive transfer task. We hypothesized that NBM lesions would not affect performance in the appetitive phase, but that performance would be impaired during subsequent transfer to the aversive phase of the task. Additional groups of NBM lesion and control rats were tested in the avoidance condition only, where we hypothesized that NBM lesions would not disrupt performance. These hypotheses were based on the argument that the NBM is not necessary for simple association learning that does not tax attention. Both the appetitive phase of the transfer task and the avoidance only task depend only on simple associative learning and are argued not to tax attention. Consequently, performance in these tasks was predicted to be spared following NBM lesions. Complex, attention-demanding associative learning, however, is argued to depend on the NBM. Performance in the aversive phase of the transfer task is both attentionally demanding and associatively more complex than in either the appetitive or aversive tasks alone; thus, avoidance performance in the NBM lesion group was predicted to be impaired following transfer from prior appetitive conditioning. Results supported our hypotheses, with the NBM lesion group acquiring the appetitive response normally, but showing impaired performance following transfer to the aversive conditioning phase of the transfer task. Impairments were not attributable to disrupted avoidance learning per se, as avoidance behavior was normal in the NBM lesion group tested in the avoidance condition only.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editor’s note Editorial comment Editorial comment Editorial commentary Culture-brain interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1