{"title":"听觉二次强化嗅觉辨别学习的神经基础。基底外侧杏仁核复合体和眶额皮质的作用。","authors":"Graham A Cousens, Tim Otto","doi":"10.1007/BF02688858","DOIUrl":null,"url":null,"abstract":"<p><p>The basolateral amygdaloid complex (BLA) and orbitofrontal cortex (OFC) share extensive reciprocal connections, and interactions between these regions likely contribute to both mnemonic and affective processes. The present study examined the potential differential contributions of the BLA and OFC to performance of an olfactory discrimination task that incorporates auditory conditioned reinforcement and to expression of immediate post-shock freezing behavior. Damage to the BLA had little effect on performance of the conditioned reinforcement task but abolished immediate post-shock freezing behavior. In contrast, damage to OFC resulted in both a mild but significant performance decrement in the conditioned reinforcement task and a significant attenuation of immediate post-shock freezing behavior. These findings suggest that immediate post-shock freezing behavior is likely critically dependent upon interactions between the BLA and OFC. However, although mnemonic processes underlying accurate performance of the conditioned reinforcement task might be supported by OFC in part, such processes are independent of either the BLA or interactions between these two regions.</p>","PeriodicalId":73397,"journal":{"name":"Integrative physiological and behavioral science : the official journal of the Pavlovian Society","volume":"38 4","pages":"272-94"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02688858","citationCount":"24","resultStr":"{\"title\":\"Neural substrates of olfactory discrimination learning with auditory secondary reinforcement. I. Contributions of the basolateral amygdaloid complex and orbitofrontal cortex.\",\"authors\":\"Graham A Cousens, Tim Otto\",\"doi\":\"10.1007/BF02688858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The basolateral amygdaloid complex (BLA) and orbitofrontal cortex (OFC) share extensive reciprocal connections, and interactions between these regions likely contribute to both mnemonic and affective processes. The present study examined the potential differential contributions of the BLA and OFC to performance of an olfactory discrimination task that incorporates auditory conditioned reinforcement and to expression of immediate post-shock freezing behavior. Damage to the BLA had little effect on performance of the conditioned reinforcement task but abolished immediate post-shock freezing behavior. In contrast, damage to OFC resulted in both a mild but significant performance decrement in the conditioned reinforcement task and a significant attenuation of immediate post-shock freezing behavior. These findings suggest that immediate post-shock freezing behavior is likely critically dependent upon interactions between the BLA and OFC. However, although mnemonic processes underlying accurate performance of the conditioned reinforcement task might be supported by OFC in part, such processes are independent of either the BLA or interactions between these two regions.</p>\",\"PeriodicalId\":73397,\"journal\":{\"name\":\"Integrative physiological and behavioral science : the official journal of the Pavlovian Society\",\"volume\":\"38 4\",\"pages\":\"272-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF02688858\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative physiological and behavioral science : the official journal of the Pavlovian Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02688858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative physiological and behavioral science : the official journal of the Pavlovian Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02688858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural substrates of olfactory discrimination learning with auditory secondary reinforcement. I. Contributions of the basolateral amygdaloid complex and orbitofrontal cortex.
The basolateral amygdaloid complex (BLA) and orbitofrontal cortex (OFC) share extensive reciprocal connections, and interactions between these regions likely contribute to both mnemonic and affective processes. The present study examined the potential differential contributions of the BLA and OFC to performance of an olfactory discrimination task that incorporates auditory conditioned reinforcement and to expression of immediate post-shock freezing behavior. Damage to the BLA had little effect on performance of the conditioned reinforcement task but abolished immediate post-shock freezing behavior. In contrast, damage to OFC resulted in both a mild but significant performance decrement in the conditioned reinforcement task and a significant attenuation of immediate post-shock freezing behavior. These findings suggest that immediate post-shock freezing behavior is likely critically dependent upon interactions between the BLA and OFC. However, although mnemonic processes underlying accurate performance of the conditioned reinforcement task might be supported by OFC in part, such processes are independent of either the BLA or interactions between these two regions.