人类轮班工作的实验动物模型。

Helen M Murphy, Cyrilla H Wideman, George R Nadzam
{"title":"人类轮班工作的实验动物模型。","authors":"Helen M Murphy,&nbsp;Cyrilla H Wideman,&nbsp;George R Nadzam","doi":"10.1007/BF02688860","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to develop a laboratory animal model of human shift work. Two methods of monitoring circadian rhythms in rats were employed: an activity wheel cage, where number of wheel revolutions (WR) were counted, and an internal radio transmitter, which recorded gross motor activity (GMA) and body temperature (BT). Rats were implanted with biotelemetry transmitters that detected GMA and BT and were placed in activity wheel cages. A 12 hour/12 hour light/dark cycle was maintained. Subjects were subdivided into two groups: control and experimental. Following a habituation period of 15 days, in which animals had ad-libitum access to food and water and unlimited access to the running wheel, the experimental period ensued for 22 days. Control animals were food restricted and their activity wheels were locked during the light; experimental animals were food restricted and their activity wheels were locked during the dark. At the end of the experimental period, animals were returned to the habituation paradigm for 15 days. Recordings of WR, GMA and BT, as well as daily monitoring of body weight and food intake, indicated that experimental animals resembled humans employed in a shift work schedule. In the experiment, the light entrainable oscillator and the food entrainable oscillator were uncoupled in experimental animals, producing alterations in activity/rest cycles, consummatory behavior, and overt behavior. Since similar alterations occur in shift workers, it is proposed that the experimental paradigm presented in this manuscript is a useful model of shift work and provides a framework upon which future experiments may be conducted.</p>","PeriodicalId":73397,"journal":{"name":"Integrative physiological and behavioral science : the official journal of the Pavlovian Society","volume":"38 4","pages":"316-28"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02688860","citationCount":"22","resultStr":"{\"title\":\"A laboratory animal model of human shift work.\",\"authors\":\"Helen M Murphy,&nbsp;Cyrilla H Wideman,&nbsp;George R Nadzam\",\"doi\":\"10.1007/BF02688860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to develop a laboratory animal model of human shift work. Two methods of monitoring circadian rhythms in rats were employed: an activity wheel cage, where number of wheel revolutions (WR) were counted, and an internal radio transmitter, which recorded gross motor activity (GMA) and body temperature (BT). Rats were implanted with biotelemetry transmitters that detected GMA and BT and were placed in activity wheel cages. A 12 hour/12 hour light/dark cycle was maintained. Subjects were subdivided into two groups: control and experimental. Following a habituation period of 15 days, in which animals had ad-libitum access to food and water and unlimited access to the running wheel, the experimental period ensued for 22 days. Control animals were food restricted and their activity wheels were locked during the light; experimental animals were food restricted and their activity wheels were locked during the dark. At the end of the experimental period, animals were returned to the habituation paradigm for 15 days. Recordings of WR, GMA and BT, as well as daily monitoring of body weight and food intake, indicated that experimental animals resembled humans employed in a shift work schedule. In the experiment, the light entrainable oscillator and the food entrainable oscillator were uncoupled in experimental animals, producing alterations in activity/rest cycles, consummatory behavior, and overt behavior. Since similar alterations occur in shift workers, it is proposed that the experimental paradigm presented in this manuscript is a useful model of shift work and provides a framework upon which future experiments may be conducted.</p>\",\"PeriodicalId\":73397,\"journal\":{\"name\":\"Integrative physiological and behavioral science : the official journal of the Pavlovian Society\",\"volume\":\"38 4\",\"pages\":\"316-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF02688860\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative physiological and behavioral science : the official journal of the Pavlovian Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02688860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative physiological and behavioral science : the official journal of the Pavlovian Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02688860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本研究的目的是建立人类轮班工作的实验动物模型。采用了两种监测大鼠昼夜节律的方法:一种是活动轮笼,记录车轮转数(WR);另一种是内部无线电发射器,记录大运动活动(GMA)和体温(BT)。大鼠植入生物遥测发射器,检测GMA和BT,并置于活动轮笼中。维持12小时/12小时的光/暗循环。受试者再分为两组:对照组和实验组。习惯期为15 d,在习惯期中,动物可以随意获取食物和水,不受限制地进入转轮,试验期为22 d。对照动物的食物被限制,它们的活动轮在光照期间被锁定;实验动物的食物被限制,它们的活动轮在黑暗中被锁定。试验期结束后,回归习惯化模式15 d。WR、GMA和BT的记录,以及对体重和食物摄入量的日常监测表明,实验动物与轮班工作的人类相似。在实验中,实验动物的光可携振子和食物可携振子不耦合,产生活动/休息周期、完成行为和显性行为的改变。由于轮班工人也会发生类似的变化,因此本文提出的实验范式是一个有用的轮班工作模型,并为未来的实验提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A laboratory animal model of human shift work.

The purpose of this study was to develop a laboratory animal model of human shift work. Two methods of monitoring circadian rhythms in rats were employed: an activity wheel cage, where number of wheel revolutions (WR) were counted, and an internal radio transmitter, which recorded gross motor activity (GMA) and body temperature (BT). Rats were implanted with biotelemetry transmitters that detected GMA and BT and were placed in activity wheel cages. A 12 hour/12 hour light/dark cycle was maintained. Subjects were subdivided into two groups: control and experimental. Following a habituation period of 15 days, in which animals had ad-libitum access to food and water and unlimited access to the running wheel, the experimental period ensued for 22 days. Control animals were food restricted and their activity wheels were locked during the light; experimental animals were food restricted and their activity wheels were locked during the dark. At the end of the experimental period, animals were returned to the habituation paradigm for 15 days. Recordings of WR, GMA and BT, as well as daily monitoring of body weight and food intake, indicated that experimental animals resembled humans employed in a shift work schedule. In the experiment, the light entrainable oscillator and the food entrainable oscillator were uncoupled in experimental animals, producing alterations in activity/rest cycles, consummatory behavior, and overt behavior. Since similar alterations occur in shift workers, it is proposed that the experimental paradigm presented in this manuscript is a useful model of shift work and provides a framework upon which future experiments may be conducted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editor’s note Editorial comment Editorial comment Editorial commentary Culture-brain interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1