{"title":"膜兴奋性,虚弱和疲劳。","authors":"Howard J Green","doi":"10.1139/h04-020","DOIUrl":null,"url":null,"abstract":"<p><p>A failure in membrane excitability, defined as an inability of the sarcolemma and T-tubule to translate the neural discharge command into repetitive action potentials, represents an inviting cause of mechanical disfunction in both health and disease. A failure at this level would precipitate a disturbance in signal transmission between the T-tubule and the calcium release channels of the sarcoplasmic reticulum, resulting in reduced release of Ca2+, lower cytosolic free Ca2+ levels, and depressed myofibrillar activation and force generation. The ability of the sarcolemma and T-tubules to conduct repetitive action potentials is intimately dependent on active transport of Na+ and K+ following an action potential. The active transport of these cations is mediated by the Na+-K+-ATPase, an integral membrane protein that uses the energy from the hydrolysis of 1 ATP to transport 3 Na+ out of the cell and 2 K+ into the cell. A failure to recruit sufficient Na+-K+-ATPase activity during contractile activity could result in a rundown of the transmembrane gradients for Na+ and K+, leading to a loss of membrane excitability. The Na+-K+-ATPase activity depends on the amount and isoform composition of the protein, substrate availability, and acute regulatory factors. Each of these factors is examined as a potential cause of altered activation of the Na+-K+-ATPase activity and loss of membrane excitability in fatigue. Regular exercise represents a potent stimulus for upregulating Na+-K+-ATPase levels and for increasing the ability for cation transport across the sarcolemma and T-tubule membrane. As such, training may be a valuable tool in the management of fatigue in health and disease.</p>","PeriodicalId":79394,"journal":{"name":"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee","volume":"29 3","pages":"291-307"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/h04-020","citationCount":"39","resultStr":"{\"title\":\"Membrane excitability, weakness, and fatigue.\",\"authors\":\"Howard J Green\",\"doi\":\"10.1139/h04-020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A failure in membrane excitability, defined as an inability of the sarcolemma and T-tubule to translate the neural discharge command into repetitive action potentials, represents an inviting cause of mechanical disfunction in both health and disease. A failure at this level would precipitate a disturbance in signal transmission between the T-tubule and the calcium release channels of the sarcoplasmic reticulum, resulting in reduced release of Ca2+, lower cytosolic free Ca2+ levels, and depressed myofibrillar activation and force generation. The ability of the sarcolemma and T-tubules to conduct repetitive action potentials is intimately dependent on active transport of Na+ and K+ following an action potential. The active transport of these cations is mediated by the Na+-K+-ATPase, an integral membrane protein that uses the energy from the hydrolysis of 1 ATP to transport 3 Na+ out of the cell and 2 K+ into the cell. A failure to recruit sufficient Na+-K+-ATPase activity during contractile activity could result in a rundown of the transmembrane gradients for Na+ and K+, leading to a loss of membrane excitability. The Na+-K+-ATPase activity depends on the amount and isoform composition of the protein, substrate availability, and acute regulatory factors. Each of these factors is examined as a potential cause of altered activation of the Na+-K+-ATPase activity and loss of membrane excitability in fatigue. Regular exercise represents a potent stimulus for upregulating Na+-K+-ATPase levels and for increasing the ability for cation transport across the sarcolemma and T-tubule membrane. As such, training may be a valuable tool in the management of fatigue in health and disease.</p>\",\"PeriodicalId\":79394,\"journal\":{\"name\":\"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee\",\"volume\":\"29 3\",\"pages\":\"291-307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/h04-020\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/h04-020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/h04-020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A failure in membrane excitability, defined as an inability of the sarcolemma and T-tubule to translate the neural discharge command into repetitive action potentials, represents an inviting cause of mechanical disfunction in both health and disease. A failure at this level would precipitate a disturbance in signal transmission between the T-tubule and the calcium release channels of the sarcoplasmic reticulum, resulting in reduced release of Ca2+, lower cytosolic free Ca2+ levels, and depressed myofibrillar activation and force generation. The ability of the sarcolemma and T-tubules to conduct repetitive action potentials is intimately dependent on active transport of Na+ and K+ following an action potential. The active transport of these cations is mediated by the Na+-K+-ATPase, an integral membrane protein that uses the energy from the hydrolysis of 1 ATP to transport 3 Na+ out of the cell and 2 K+ into the cell. A failure to recruit sufficient Na+-K+-ATPase activity during contractile activity could result in a rundown of the transmembrane gradients for Na+ and K+, leading to a loss of membrane excitability. The Na+-K+-ATPase activity depends on the amount and isoform composition of the protein, substrate availability, and acute regulatory factors. Each of these factors is examined as a potential cause of altered activation of the Na+-K+-ATPase activity and loss of membrane excitability in fatigue. Regular exercise represents a potent stimulus for upregulating Na+-K+-ATPase levels and for increasing the ability for cation transport across the sarcolemma and T-tubule membrane. As such, training may be a valuable tool in the management of fatigue in health and disease.