空洞的作用:蛋白质中的空洞仅仅是包装缺陷吗?

The Italian journal of biochemistry Pub Date : 2004-03-01
Beatrice Vallone, Maurizio Brunori
{"title":"空洞的作用:蛋白质中的空洞仅仅是包装缺陷吗?","authors":"Beatrice Vallone,&nbsp;Maurizio Brunori","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Atomic packing in proteins is not optimized, most structures containing internal cavities, which have been identified by molecular modelling and characterized experimentally. Cavities seem to play a role in assisting conformational changes between domains or subunit interfaces. Comparison between homologous proteins from thermophiles and mesophiles indicates that optimizing packing enhances stabilization at the expense of flexibility. For proteins which interact with small ligands or substrates, cavities seem to play a role in controlling binding and catalysis, rather than being mere \"packing defects\". We believe that a more complete analysis on the localization, conservation and role of cavities in protein structures (by modelling and site-directed mutagenesis), will reveal that rather than being randomly distributed, they are located in key positions to allow structural dynamics and thereby functional control.</p>","PeriodicalId":22527,"journal":{"name":"The Italian journal of biochemistry","volume":"53 1","pages":"46-52"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roles for holes: are cavities in proteins mere packing defects?\",\"authors\":\"Beatrice Vallone,&nbsp;Maurizio Brunori\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atomic packing in proteins is not optimized, most structures containing internal cavities, which have been identified by molecular modelling and characterized experimentally. Cavities seem to play a role in assisting conformational changes between domains or subunit interfaces. Comparison between homologous proteins from thermophiles and mesophiles indicates that optimizing packing enhances stabilization at the expense of flexibility. For proteins which interact with small ligands or substrates, cavities seem to play a role in controlling binding and catalysis, rather than being mere \\\"packing defects\\\". We believe that a more complete analysis on the localization, conservation and role of cavities in protein structures (by modelling and site-directed mutagenesis), will reveal that rather than being randomly distributed, they are located in key positions to allow structural dynamics and thereby functional control.</p>\",\"PeriodicalId\":22527,\"journal\":{\"name\":\"The Italian journal of biochemistry\",\"volume\":\"53 1\",\"pages\":\"46-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Italian journal of biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Italian journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质中的原子填充没有得到优化,大多数结构含有内部空腔,这已经通过分子模型和实验表征。空腔似乎在辅助结构域或亚基界面之间的构象变化中起作用。对来自嗜热菌和嗜中菌的同源蛋白的比较表明,优化包装以牺牲灵活性为代价提高稳定性。对于与小配体或底物相互作用的蛋白质,空腔似乎在控制结合和催化方面起作用,而不仅仅是“包装缺陷”。我们相信,对蛋白质结构中空腔的定位、保护和作用(通过建模和定点诱变)进行更全面的分析,将揭示它们不是随机分布的,而是位于关键位置,从而允许结构动力学和功能控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Roles for holes: are cavities in proteins mere packing defects?

Atomic packing in proteins is not optimized, most structures containing internal cavities, which have been identified by molecular modelling and characterized experimentally. Cavities seem to play a role in assisting conformational changes between domains or subunit interfaces. Comparison between homologous proteins from thermophiles and mesophiles indicates that optimizing packing enhances stabilization at the expense of flexibility. For proteins which interact with small ligands or substrates, cavities seem to play a role in controlling binding and catalysis, rather than being mere "packing defects". We believe that a more complete analysis on the localization, conservation and role of cavities in protein structures (by modelling and site-directed mutagenesis), will reveal that rather than being randomly distributed, they are located in key positions to allow structural dynamics and thereby functional control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alpha-bisabolol: unexpected plant-derived weapon in the struggle against tumour survival? Mitochondrial calcium signalling: message of life and death. Role of mitochondrial DNA in longevity, aging and age-related diseases in humans: a reappraisal. Characterization of oligomeric forms from mammalian F0F1ATP synthase by BN-PAGE: the role of detergents. Confinement of cardiolipin and ubiquinone in reaction-center core complexes purified from the photosynthetic bacterium Rhodobacter sphaeroides.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1