线粒体作为雌激素在中枢神经系统中的治疗靶点。

Jon Nilsen, Roberta Diaz Brinton
{"title":"线粒体作为雌激素在中枢神经系统中的治疗靶点。","authors":"Jon Nilsen,&nbsp;Roberta Diaz Brinton","doi":"10.2174/1568007043337193","DOIUrl":null,"url":null,"abstract":"<p><p>Neuron viability and defense against neurodegenerative disease can be achieved by targeting mitochondrial function to reduce oxidative stress, increase mitochondrial defense mechanisms, or promote energetic metabolism and Ca2+ homeostasis. Exposure to estrogen prior to contact with toxic agents can protect neurons against a wide range of degenerative insults. The proactive defense state induced by estrogen is mediated by complex mechanisms ranging from chemical to biochemical to genomic but which converge upon regulation of mitochondria function. Estrogen preserves ATP levels via increased/enhanced oxidative phosphorylation and reduced ATPase activity thereby increasing mitochondrial respiration efficiency, resulting in a lower oxidative load. In addition, estrogen increases antiapoptotic proteins, Bcl-2 and Bcl-xL, which prevents activation of the permeability transition pore protecting against estrogen-induced increase in mitochondrial Ca2+ sequestration. These effects are likely to be enhanced by antioxidant effects of estrogen, preventing the initiation of the deleterious \"mitochondrial spiral\". The extent to which each of these mechanisms contribute to the overall proactive defense state induced by estrogen remains to be determined. However, each aspect of the cascade appears to make a significant if not obligatory impact on the neuroprotective effects of estrogens. Moreover each component of the cascade is required for estrogen regulation of mitochondrial function. Mechanisms of estrogen action and results of the clinical efficacy of estrogen therapy for prevention or treatment of Alzheimer's disease are considered in the context of clinical use of estrogen therapy and the design of brain selective estrogens or NeuroSERMs.</p>","PeriodicalId":11063,"journal":{"name":"Current drug targets. CNS and neurological disorders","volume":"3 4","pages":"297-313"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":"{\"title\":\"Mitochondria as therapeutic targets of estrogen action in the central nervous system.\",\"authors\":\"Jon Nilsen,&nbsp;Roberta Diaz Brinton\",\"doi\":\"10.2174/1568007043337193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuron viability and defense against neurodegenerative disease can be achieved by targeting mitochondrial function to reduce oxidative stress, increase mitochondrial defense mechanisms, or promote energetic metabolism and Ca2+ homeostasis. Exposure to estrogen prior to contact with toxic agents can protect neurons against a wide range of degenerative insults. The proactive defense state induced by estrogen is mediated by complex mechanisms ranging from chemical to biochemical to genomic but which converge upon regulation of mitochondria function. Estrogen preserves ATP levels via increased/enhanced oxidative phosphorylation and reduced ATPase activity thereby increasing mitochondrial respiration efficiency, resulting in a lower oxidative load. In addition, estrogen increases antiapoptotic proteins, Bcl-2 and Bcl-xL, which prevents activation of the permeability transition pore protecting against estrogen-induced increase in mitochondrial Ca2+ sequestration. These effects are likely to be enhanced by antioxidant effects of estrogen, preventing the initiation of the deleterious \\\"mitochondrial spiral\\\". The extent to which each of these mechanisms contribute to the overall proactive defense state induced by estrogen remains to be determined. However, each aspect of the cascade appears to make a significant if not obligatory impact on the neuroprotective effects of estrogens. Moreover each component of the cascade is required for estrogen regulation of mitochondrial function. Mechanisms of estrogen action and results of the clinical efficacy of estrogen therapy for prevention or treatment of Alzheimer's disease are considered in the context of clinical use of estrogen therapy and the design of brain selective estrogens or NeuroSERMs.</p>\",\"PeriodicalId\":11063,\"journal\":{\"name\":\"Current drug targets. CNS and neurological disorders\",\"volume\":\"3 4\",\"pages\":\"297-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"156\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug targets. CNS and neurological disorders\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1568007043337193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug targets. CNS and neurological disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1568007043337193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156

摘要

神经元活力和防御神经退行性疾病可以通过靶向线粒体功能来减少氧化应激,增加线粒体防御机制,或促进能量代谢和Ca2+稳态来实现。在接触有毒物质之前暴露于雌激素可以保护神经元免受广泛的退行性损伤。雌激素诱导的主动防御状态是由复杂的机制介导的,从化学到生化再到基因组,但这些机制都集中在线粒体功能的调节上。雌激素通过增加/增强氧化磷酸化和降低ATP酶活性来保持ATP水平,从而提高线粒体呼吸效率,从而降低氧化负荷。此外,雌激素增加抗凋亡蛋白Bcl-2和Bcl-xL,从而阻止通透性过渡孔的激活,防止雌激素诱导的线粒体Ca2+固存增加。雌激素的抗氧化作用可能会增强这些作用,防止有害的“线粒体螺旋”的开始。这些机制在多大程度上有助于雌激素诱导的整体主动防御状态仍有待确定。然而,级联反应的每个方面似乎都对雌激素的神经保护作用产生了重大影响,如果不是强制性的影响的话。此外,这个级联反应的每一个组成部分都是雌激素调节线粒体功能所必需的。雌激素的作用机制和雌激素治疗预防或治疗阿尔茨海默病的临床疗效结果是在雌激素治疗的临床应用和脑选择性雌激素或neuroserm的设计背景下考虑的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitochondria as therapeutic targets of estrogen action in the central nervous system.

Neuron viability and defense against neurodegenerative disease can be achieved by targeting mitochondrial function to reduce oxidative stress, increase mitochondrial defense mechanisms, or promote energetic metabolism and Ca2+ homeostasis. Exposure to estrogen prior to contact with toxic agents can protect neurons against a wide range of degenerative insults. The proactive defense state induced by estrogen is mediated by complex mechanisms ranging from chemical to biochemical to genomic but which converge upon regulation of mitochondria function. Estrogen preserves ATP levels via increased/enhanced oxidative phosphorylation and reduced ATPase activity thereby increasing mitochondrial respiration efficiency, resulting in a lower oxidative load. In addition, estrogen increases antiapoptotic proteins, Bcl-2 and Bcl-xL, which prevents activation of the permeability transition pore protecting against estrogen-induced increase in mitochondrial Ca2+ sequestration. These effects are likely to be enhanced by antioxidant effects of estrogen, preventing the initiation of the deleterious "mitochondrial spiral". The extent to which each of these mechanisms contribute to the overall proactive defense state induced by estrogen remains to be determined. However, each aspect of the cascade appears to make a significant if not obligatory impact on the neuroprotective effects of estrogens. Moreover each component of the cascade is required for estrogen regulation of mitochondrial function. Mechanisms of estrogen action and results of the clinical efficacy of estrogen therapy for prevention or treatment of Alzheimer's disease are considered in the context of clinical use of estrogen therapy and the design of brain selective estrogens or NeuroSERMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cannabinoids. The endocannabinoid system in the brain: from biology to therapy. Endocannabinoid metabolic pathways and enzymes. Molecular biology of the enzymes that degrade endocannabinoids. Endocannabinoids in the central nervous system: from neuronal networks to behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1