低氧活化抗癌药物的前景。

William A Denny
{"title":"低氧活化抗癌药物的前景。","authors":"William A Denny","doi":"10.2174/1568011043352812","DOIUrl":null,"url":null,"abstract":"<p><p>The occurrence of hypoxic cells in solid tumors, and their resistance to radiotherapy and many chemotherapeutic drugs, has engendered an interest in non-toxic prodrugs that can be activated selectively under hypoxic conditions. Despite this, no such compounds are yet registered for clinical use, due to the difficulty of their design and of measuring the extent of hypoxia clinically, and the failure of early examples. A new appreciation of the critical importance of the extravascular diffusion of the parent prodrug from the blood vessels to the remote hypoxic cells, and the back-diffusion of the activated cytotoxin from the hypoxic cells to surrounding tumor cells, is now guiding drug design in this area. New principles for the selective activation of prodrugs have also been reported, including using the reducing species generated in cells by radiotherapy itself, and using non-pathogenic anaerobic bacteria as a hypoxia-dependent vector for the delivery of prodrug-activating enzymes in a suicide gene therapy context.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"4 5","pages":"395-9"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Prospects for hypoxia-activated anticancer drugs.\",\"authors\":\"William A Denny\",\"doi\":\"10.2174/1568011043352812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The occurrence of hypoxic cells in solid tumors, and their resistance to radiotherapy and many chemotherapeutic drugs, has engendered an interest in non-toxic prodrugs that can be activated selectively under hypoxic conditions. Despite this, no such compounds are yet registered for clinical use, due to the difficulty of their design and of measuring the extent of hypoxia clinically, and the failure of early examples. A new appreciation of the critical importance of the extravascular diffusion of the parent prodrug from the blood vessels to the remote hypoxic cells, and the back-diffusion of the activated cytotoxin from the hypoxic cells to surrounding tumor cells, is now guiding drug design in this area. New principles for the selective activation of prodrugs have also been reported, including using the reducing species generated in cells by radiotherapy itself, and using non-pathogenic anaerobic bacteria as a hypoxia-dependent vector for the delivery of prodrug-activating enzymes in a suicide gene therapy context.</p>\",\"PeriodicalId\":10914,\"journal\":{\"name\":\"Current medicinal chemistry. Anti-cancer agents\",\"volume\":\"4 5\",\"pages\":\"395-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry. Anti-cancer agents\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1568011043352812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry. Anti-cancer agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1568011043352812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

实体肿瘤中缺氧细胞的出现,以及它们对放疗和许多化疗药物的耐药性,引起了人们对可以在缺氧条件下选择性激活的无毒前药的兴趣。尽管如此,由于设计和临床缺氧程度测量的困难,以及早期案例的失败,尚未有此类化合物注册用于临床使用。对母体前药从血管向远处缺氧细胞的血管外扩散以及活化细胞毒素从缺氧细胞向周围肿瘤细胞的反向扩散至关重要的新认识,现在正在指导该领域的药物设计。选择性激活前药的新原理也有报道,包括使用放射治疗本身在细胞中产生的还原性物质,以及在自杀基因治疗背景下使用非致病性厌氧菌作为缺氧依赖载体来递送前药激活酶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prospects for hypoxia-activated anticancer drugs.

The occurrence of hypoxic cells in solid tumors, and their resistance to radiotherapy and many chemotherapeutic drugs, has engendered an interest in non-toxic prodrugs that can be activated selectively under hypoxic conditions. Despite this, no such compounds are yet registered for clinical use, due to the difficulty of their design and of measuring the extent of hypoxia clinically, and the failure of early examples. A new appreciation of the critical importance of the extravascular diffusion of the parent prodrug from the blood vessels to the remote hypoxic cells, and the back-diffusion of the activated cytotoxin from the hypoxic cells to surrounding tumor cells, is now guiding drug design in this area. New principles for the selective activation of prodrugs have also been reported, including using the reducing species generated in cells by radiotherapy itself, and using non-pathogenic anaerobic bacteria as a hypoxia-dependent vector for the delivery of prodrug-activating enzymes in a suicide gene therapy context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Lanthanides as anticancer agents. Current drug therapy for prostate cancer: an overview. Sulfo-quinovosyl-acyl-glycerol (SQAG), a eukaryotic DNA polymerase inhibitor and anti-cancer agent. Lycopene: a review of its potential as an anticancer agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1