钙依赖性酶对AMPA受体特性的脑可塑性和重塑。

Guy Massicotte, Michel Baudry
{"title":"钙依赖性酶对AMPA受体特性的脑可塑性和重塑。","authors":"Guy Massicotte,&nbsp;Michel Baudry","doi":"10.1007/978-0-306-48573-2_12","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term potentiation (LTP) and long-term depression (LTD) are two experimental models of synaptic plasticity that have been studied extensively in the last 25 years, as they may represent basic mechanisms to store certain types of information in neuronal networks. In several brain regions, these two forms of synaptic plasticity require dendritic depolarization, and the amplitude and duration of the depolarization-induced calcium signal are crucial parameters for the generation of either LTP or LTD. The rise in calcium concentration mediated by activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors has been proposed to stimulate various calcium-dependent processes that could convert the induction signal into long-lasting changes in synaptic structure and function. According to several lines of experimental evidence, alterations in synaptic function observed with LTP and LTD are thought to be the result of modifications of postsynaptic currents mediated by the a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtype of glutamate receptors. The question of which type(s) of receptor changes constitutes the basis for the expression of synaptic plasticity is still very much open. Here, we review data relevant to the issue of selective modulation of AMPA receptor properties occurring after learning and memory, environmental enrichment, and synaptic plasticity. We also discuss potential cellular mechanisms whereby calcium-dependent enzymes might regulate AMPA receptor properties during LTP and LTD, focusing on protein kinases, proteases and lipases.</p>","PeriodicalId":77144,"journal":{"name":"Genetic engineering","volume":"26 ","pages":"239-54"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Brain plasticity and remodeling of AMPA receptor properties by calcium-dependent enzymes.\",\"authors\":\"Guy Massicotte,&nbsp;Michel Baudry\",\"doi\":\"10.1007/978-0-306-48573-2_12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long-term potentiation (LTP) and long-term depression (LTD) are two experimental models of synaptic plasticity that have been studied extensively in the last 25 years, as they may represent basic mechanisms to store certain types of information in neuronal networks. In several brain regions, these two forms of synaptic plasticity require dendritic depolarization, and the amplitude and duration of the depolarization-induced calcium signal are crucial parameters for the generation of either LTP or LTD. The rise in calcium concentration mediated by activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors has been proposed to stimulate various calcium-dependent processes that could convert the induction signal into long-lasting changes in synaptic structure and function. According to several lines of experimental evidence, alterations in synaptic function observed with LTP and LTD are thought to be the result of modifications of postsynaptic currents mediated by the a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtype of glutamate receptors. The question of which type(s) of receptor changes constitutes the basis for the expression of synaptic plasticity is still very much open. Here, we review data relevant to the issue of selective modulation of AMPA receptor properties occurring after learning and memory, environmental enrichment, and synaptic plasticity. We also discuss potential cellular mechanisms whereby calcium-dependent enzymes might regulate AMPA receptor properties during LTP and LTD, focusing on protein kinases, proteases and lipases.</p>\",\"PeriodicalId\":77144,\"journal\":{\"name\":\"Genetic engineering\",\"volume\":\"26 \",\"pages\":\"239-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-0-306-48573-2_12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-0-306-48573-2_12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

长期增强(LTP)和长期抑制(LTD)是近25年来被广泛研究的两种突触可塑性实验模型,因为它们可能代表了神经元网络中存储某些类型信息的基本机制。在大脑的一些区域,这两种形式的突触可塑性需要树突去极化,而去极化诱导的钙信号的振幅和持续时间是LTP或LTD产生的关键参数。谷氨酸受体n -甲基-d -天冬氨酸(NMDA)亚型激活介导的钙浓度升高刺激了各种钙依赖过程,这些过程可以将诱导信号转化为突触结构和功能的持久变化。根据几条实验证据,LTP和LTD观察到的突触功能改变被认为是谷氨酸受体的a-氨基-3-羟基-5-甲基-4-异唑丙酸(AMPA)亚型介导的突触后电流改变的结果。哪种类型的受体变化构成了突触可塑性表达的基础,这个问题仍然非常开放。在此,我们回顾了与学习记忆、环境富集和突触可塑性后AMPA受体特性的选择性调节有关的数据。我们还讨论了潜在的细胞机制,即钙依赖性酶可能在LTP和LTD期间调节AMPA受体的特性,重点是蛋白激酶,蛋白酶和脂肪酶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain plasticity and remodeling of AMPA receptor properties by calcium-dependent enzymes.

Long-term potentiation (LTP) and long-term depression (LTD) are two experimental models of synaptic plasticity that have been studied extensively in the last 25 years, as they may represent basic mechanisms to store certain types of information in neuronal networks. In several brain regions, these two forms of synaptic plasticity require dendritic depolarization, and the amplitude and duration of the depolarization-induced calcium signal are crucial parameters for the generation of either LTP or LTD. The rise in calcium concentration mediated by activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors has been proposed to stimulate various calcium-dependent processes that could convert the induction signal into long-lasting changes in synaptic structure and function. According to several lines of experimental evidence, alterations in synaptic function observed with LTP and LTD are thought to be the result of modifications of postsynaptic currents mediated by the a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtype of glutamate receptors. The question of which type(s) of receptor changes constitutes the basis for the expression of synaptic plasticity is still very much open. Here, we review data relevant to the issue of selective modulation of AMPA receptor properties occurring after learning and memory, environmental enrichment, and synaptic plasticity. We also discuss potential cellular mechanisms whereby calcium-dependent enzymes might regulate AMPA receptor properties during LTP and LTD, focusing on protein kinases, proteases and lipases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic Engineering: Reading, Writing and Editing Genes Altering Genetic Material in Bacteria Genetic Engineering of Plants Gene Therapy and Disease Biotechnology, Safety, and The Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1