基于自适应持续时间分段评价的离线手写体汉字识别方法。

Guo-hong Li, Peng-fei Shi
{"title":"基于自适应持续时间分段评价的离线手写体汉字识别方法。","authors":"Guo-hong Li,&nbsp;Peng-fei Shi","doi":"10.1631/jzus.2004.1392","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a methodology for off-line handwritten Chinese character recognition based on mergence of consecutive segments of adaptive duration. The handwritten Chinese character string is partitioned into a sequence of consecutive segments, which are combined to implement dissimilarity evaluation within a sliding window whose durations are determined adaptively by the integration of shapes and context of evaluations. The average stroke width is estimated for the handwritten Chinese character string, and a set of candidate character segmentation boundaries is found by using the integration of pixel and stroke features. The final decisions on segmentation and recognition are made under minimal arithmetical mean dissimilarities. Experiments proved that the proposed approach of adaptive duration outperforms the method of fixed duration, and is very effective for the recognition of overlapped, broken, touched, loosely configured Chinese characters.</p>","PeriodicalId":85042,"journal":{"name":"Journal of Zhejiang University. Science","volume":"5 11","pages":"1392-7"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.2004.1392","citationCount":"11","resultStr":"{\"title\":\"An approach to offline handwritten Chinese character recognition based on segment evaluation of adaptive duration.\",\"authors\":\"Guo-hong Li,&nbsp;Peng-fei Shi\",\"doi\":\"10.1631/jzus.2004.1392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a methodology for off-line handwritten Chinese character recognition based on mergence of consecutive segments of adaptive duration. The handwritten Chinese character string is partitioned into a sequence of consecutive segments, which are combined to implement dissimilarity evaluation within a sliding window whose durations are determined adaptively by the integration of shapes and context of evaluations. The average stroke width is estimated for the handwritten Chinese character string, and a set of candidate character segmentation boundaries is found by using the integration of pixel and stroke features. The final decisions on segmentation and recognition are made under minimal arithmetical mean dissimilarities. Experiments proved that the proposed approach of adaptive duration outperforms the method of fixed duration, and is very effective for the recognition of overlapped, broken, touched, loosely configured Chinese characters.</p>\",\"PeriodicalId\":85042,\"journal\":{\"name\":\"Journal of Zhejiang University. Science\",\"volume\":\"5 11\",\"pages\":\"1392-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1631/jzus.2004.1392\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University. Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.2004.1392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University. Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.2004.1392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种基于自适应持续时间连续段合并的离线手写体汉字识别方法。将手写体中文字符串分割为一系列连续的片段,将这些片段组合在一起,在滑动窗口内实现不相似度评估,该滑动窗口的持续时间通过评估的形状和上下文的集成自适应确定。对手写汉字字符串进行平均笔画宽度估计,利用像素特征和笔画特征相结合的方法找到候选汉字分割边界。分割和识别的最终决定是在最小的算术平均不相似度下做出的。实验证明,本文提出的自适应时长的方法优于固定时长的方法,对重叠、破碎、触碰、松散的汉字识别非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An approach to offline handwritten Chinese character recognition based on segment evaluation of adaptive duration.

This paper presents a methodology for off-line handwritten Chinese character recognition based on mergence of consecutive segments of adaptive duration. The handwritten Chinese character string is partitioned into a sequence of consecutive segments, which are combined to implement dissimilarity evaluation within a sliding window whose durations are determined adaptively by the integration of shapes and context of evaluations. The average stroke width is estimated for the handwritten Chinese character string, and a set of candidate character segmentation boundaries is found by using the integration of pixel and stroke features. The final decisions on segmentation and recognition are made under minimal arithmetical mean dissimilarities. Experiments proved that the proposed approach of adaptive duration outperforms the method of fixed duration, and is very effective for the recognition of overlapped, broken, touched, loosely configured Chinese characters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synergetic effects for p-nitrophenol abatement using a combined activated carbon adsorption-electrooxidation process. Self-desiccation mechanism of high-performance concrete. Preparation of natural alpha-tocopherol from non-alpha-tocopherols. Comparison of volatile and semivolatile compounds from commercial cigarette by supercritical fluid extraction and simultaneous distillation extraction. Land degradation, government subsidy, and smallholders' conservation decision: the case of the loess plateau in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1