{"title":"儿童肥胖中调节脂质代谢和血浆脂质的激素。","authors":"M Gil-Campos, R Cañete, A Gil","doi":"10.1038/sj.ijo.0802806","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To review the mechanisms by which leptin, insulin and adiponectin influence lipid metabolism and plasma lipids in obesity, as well as to describe the associations between these hormones in prepubertal children.</p><p><strong>Method: </strong>Revision of relevant papers published in the last 5 y related to the interactions of leptin, insulin and adiponectin, with special emphasis on those reporting potential mechanisms by which these hormones regulate lipid metabolism and plasma lipids. We also provide original results concerning the relationships found between plasma lipids and leptin, and insulin and adiponectin in prepubertal obese children.</p><p><strong>Results: </strong>Recent data in the literature shed new light to explain the effects of both leptin and adiponectin in the regulation of lipid metabolism in peripheral tissues. Activation of the AMP-dependent kinase pathway and subsequent increased fatty acid oxidation seems to be the main mechanism of action of these hormones in the regulation of lipid metabolism. In addition, we have found that insulin plasma levels are positively associated to leptin but negatively correlated with adiponectin in obese children. Adiponectin is negatively associated to plasma lipid markers of metabolic syndrome but positively related to HDL-cholesterol, whereas insulin and leptin show opposite patterns. These results support the effect of adiponectin in increasing insulin sensitivity and decreasing plasma triglycerides.</p><p><strong>Conclusion: </strong>Leptin, insulin and adiponectin are associated hormones that regulate lipid metabolism in childhood. Adiponectin appears to be the missing link to explain the alterations in lipid metabolism and plasma lipids seen in obesity.</p>","PeriodicalId":14227,"journal":{"name":"International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/sj.ijo.0802806","citationCount":"61","resultStr":"{\"title\":\"Hormones regulating lipid metabolism and plasma lipids in childhood obesity.\",\"authors\":\"M Gil-Campos, R Cañete, A Gil\",\"doi\":\"10.1038/sj.ijo.0802806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To review the mechanisms by which leptin, insulin and adiponectin influence lipid metabolism and plasma lipids in obesity, as well as to describe the associations between these hormones in prepubertal children.</p><p><strong>Method: </strong>Revision of relevant papers published in the last 5 y related to the interactions of leptin, insulin and adiponectin, with special emphasis on those reporting potential mechanisms by which these hormones regulate lipid metabolism and plasma lipids. We also provide original results concerning the relationships found between plasma lipids and leptin, and insulin and adiponectin in prepubertal obese children.</p><p><strong>Results: </strong>Recent data in the literature shed new light to explain the effects of both leptin and adiponectin in the regulation of lipid metabolism in peripheral tissues. Activation of the AMP-dependent kinase pathway and subsequent increased fatty acid oxidation seems to be the main mechanism of action of these hormones in the regulation of lipid metabolism. In addition, we have found that insulin plasma levels are positively associated to leptin but negatively correlated with adiponectin in obese children. Adiponectin is negatively associated to plasma lipid markers of metabolic syndrome but positively related to HDL-cholesterol, whereas insulin and leptin show opposite patterns. These results support the effect of adiponectin in increasing insulin sensitivity and decreasing plasma triglycerides.</p><p><strong>Conclusion: </strong>Leptin, insulin and adiponectin are associated hormones that regulate lipid metabolism in childhood. Adiponectin appears to be the missing link to explain the alterations in lipid metabolism and plasma lipids seen in obesity.</p>\",\"PeriodicalId\":14227,\"journal\":{\"name\":\"International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/sj.ijo.0802806\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/sj.ijo.0802806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/sj.ijo.0802806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hormones regulating lipid metabolism and plasma lipids in childhood obesity.
Objective: To review the mechanisms by which leptin, insulin and adiponectin influence lipid metabolism and plasma lipids in obesity, as well as to describe the associations between these hormones in prepubertal children.
Method: Revision of relevant papers published in the last 5 y related to the interactions of leptin, insulin and adiponectin, with special emphasis on those reporting potential mechanisms by which these hormones regulate lipid metabolism and plasma lipids. We also provide original results concerning the relationships found between plasma lipids and leptin, and insulin and adiponectin in prepubertal obese children.
Results: Recent data in the literature shed new light to explain the effects of both leptin and adiponectin in the regulation of lipid metabolism in peripheral tissues. Activation of the AMP-dependent kinase pathway and subsequent increased fatty acid oxidation seems to be the main mechanism of action of these hormones in the regulation of lipid metabolism. In addition, we have found that insulin plasma levels are positively associated to leptin but negatively correlated with adiponectin in obese children. Adiponectin is negatively associated to plasma lipid markers of metabolic syndrome but positively related to HDL-cholesterol, whereas insulin and leptin show opposite patterns. These results support the effect of adiponectin in increasing insulin sensitivity and decreasing plasma triglycerides.
Conclusion: Leptin, insulin and adiponectin are associated hormones that regulate lipid metabolism in childhood. Adiponectin appears to be the missing link to explain the alterations in lipid metabolism and plasma lipids seen in obesity.