Wanling Yang, Brook White, Eleanor K Spicer, Benjamin L Weinstein, John D Hildebrandt
{"title":"人类GNAS基因的复杂单倍型结构确定了一个以单核苷酸多态性为中心的重组热点,广泛用于关联研究。","authors":"Wanling Yang, Brook White, Eleanor K Spicer, Benjamin L Weinstein, John D Hildebrandt","doi":"10.1097/00008571-200411000-00005","DOIUrl":null,"url":null,"abstract":"<p><p>The alpha subunit of the heterotrimeric G protein Gs (Gsalpha) is involved in numerous physiological processes and is a primary determinant of cellular responses to extracellular signals. Genetic variations in the Gsalpha gene may play an important role in complex diseases and drug responses. To characterize the genetic diversity in this locus, we resequenced exons and flanking introns of the gene in 44 genomic samples and analysed the haplotype structure of the gene in an additional 50 African-Americans and 50 Caucasians. Significant differences in allele frequency for nearly all the genotyped single nucleotide polymorphism (SNPs) were detected between the two ethnic groups. Linkage disequilibrium (LD) analysis of this locus revealed two haplotype blocks characterized by strong LD and reduced haplotype diversity, especially in Caucasians. Between the two blocks is a narrow (approximately 3 kb) recombination hotspot centred on exons 4 and 5, and a widely used genetic marker in association studies in this region (rs7121) was in linkage equilibrium with the rest of the gene. The haplotype structure of the GNAS locus warrants reevaluation of previous association studies that used marker rs7121 and affects choice of SNP markers to be used in future studies of this locus.</p>","PeriodicalId":19917,"journal":{"name":"Pharmacogenetics","volume":"14 11","pages":"741-7"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1097/00008571-200411000-00005","citationCount":"14","resultStr":"{\"title\":\"Complex haplotype structure of the human GNAS gene identifies a recombination hotspot centred on a single nucleotide polymorphism widely used in association studies.\",\"authors\":\"Wanling Yang, Brook White, Eleanor K Spicer, Benjamin L Weinstein, John D Hildebrandt\",\"doi\":\"10.1097/00008571-200411000-00005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The alpha subunit of the heterotrimeric G protein Gs (Gsalpha) is involved in numerous physiological processes and is a primary determinant of cellular responses to extracellular signals. Genetic variations in the Gsalpha gene may play an important role in complex diseases and drug responses. To characterize the genetic diversity in this locus, we resequenced exons and flanking introns of the gene in 44 genomic samples and analysed the haplotype structure of the gene in an additional 50 African-Americans and 50 Caucasians. Significant differences in allele frequency for nearly all the genotyped single nucleotide polymorphism (SNPs) were detected between the two ethnic groups. Linkage disequilibrium (LD) analysis of this locus revealed two haplotype blocks characterized by strong LD and reduced haplotype diversity, especially in Caucasians. Between the two blocks is a narrow (approximately 3 kb) recombination hotspot centred on exons 4 and 5, and a widely used genetic marker in association studies in this region (rs7121) was in linkage equilibrium with the rest of the gene. The haplotype structure of the GNAS locus warrants reevaluation of previous association studies that used marker rs7121 and affects choice of SNP markers to be used in future studies of this locus.</p>\",\"PeriodicalId\":19917,\"journal\":{\"name\":\"Pharmacogenetics\",\"volume\":\"14 11\",\"pages\":\"741-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1097/00008571-200411000-00005\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/00008571-200411000-00005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/00008571-200411000-00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Complex haplotype structure of the human GNAS gene identifies a recombination hotspot centred on a single nucleotide polymorphism widely used in association studies.
The alpha subunit of the heterotrimeric G protein Gs (Gsalpha) is involved in numerous physiological processes and is a primary determinant of cellular responses to extracellular signals. Genetic variations in the Gsalpha gene may play an important role in complex diseases and drug responses. To characterize the genetic diversity in this locus, we resequenced exons and flanking introns of the gene in 44 genomic samples and analysed the haplotype structure of the gene in an additional 50 African-Americans and 50 Caucasians. Significant differences in allele frequency for nearly all the genotyped single nucleotide polymorphism (SNPs) were detected between the two ethnic groups. Linkage disequilibrium (LD) analysis of this locus revealed two haplotype blocks characterized by strong LD and reduced haplotype diversity, especially in Caucasians. Between the two blocks is a narrow (approximately 3 kb) recombination hotspot centred on exons 4 and 5, and a widely used genetic marker in association studies in this region (rs7121) was in linkage equilibrium with the rest of the gene. The haplotype structure of the GNAS locus warrants reevaluation of previous association studies that used marker rs7121 and affects choice of SNP markers to be used in future studies of this locus.