线粒体医学。

Salvatore Dimauro
{"title":"线粒体医学。","authors":"Salvatore Dimauro","doi":"10.1016/j.bbabio.2004.08.003","DOIUrl":null,"url":null,"abstract":"<p><p>After reviewing the history of mitochondrial diseases, I follow a genetic classification to discuss new developments and old conundrums. In the field of mitochondrial DNA (mtDNA) mutations, I argue that we are not yet scraping the bottom of the barrel because: (i) new mtDNA mutations are still being discovered, especially in protein-coding genes; (ii) the pathogenicity of homoplasmic mutations is being revisited; (iii) some genetic dogmas are chipped but not broken; (iv) mtDNA haplotypes are gaining interest in human pathology; (v) pathogenesis is still largely enigmatic. In the field of nuclear DNA (nDNA) mutations, there has been good progress in our understanding of disorders due to faulty intergenomic communication. Of the genes responsible for multiple deletions and depletion of mtDNA, mutations in POLG have been associated with a great variety of clinical phenotypes in humans and to precocious aging in mice. Novel pathogenetic mechanisms include alterations in the lipid milieu of the inner mitochondrial membrane and mutations in genes controlling mitochondrial motility, fission, and fusion.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbabio.2004.08.003","citationCount":"11","resultStr":"{\"title\":\"Mitochondrial medicine.\",\"authors\":\"Salvatore Dimauro\",\"doi\":\"10.1016/j.bbabio.2004.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>After reviewing the history of mitochondrial diseases, I follow a genetic classification to discuss new developments and old conundrums. In the field of mitochondrial DNA (mtDNA) mutations, I argue that we are not yet scraping the bottom of the barrel because: (i) new mtDNA mutations are still being discovered, especially in protein-coding genes; (ii) the pathogenicity of homoplasmic mutations is being revisited; (iii) some genetic dogmas are chipped but not broken; (iv) mtDNA haplotypes are gaining interest in human pathology; (v) pathogenesis is still largely enigmatic. In the field of nuclear DNA (nDNA) mutations, there has been good progress in our understanding of disorders due to faulty intergenomic communication. Of the genes responsible for multiple deletions and depletion of mtDNA, mutations in POLG have been associated with a great variety of clinical phenotypes in humans and to precocious aging in mice. Novel pathogenetic mechanisms include alterations in the lipid milieu of the inner mitochondrial membrane and mutations in genes controlling mitochondrial motility, fission, and fusion.</p>\",\"PeriodicalId\":8811,\"journal\":{\"name\":\"Biochimica et biophysica acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bbabio.2004.08.003\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbabio.2004.08.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bbabio.2004.08.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在回顾了线粒体疾病的历史之后,我遵循遗传分类来讨论新的发展和旧的难题。在线粒体DNA (mtDNA)突变领域,我认为我们还没有触及底部,因为:(1)新的mtDNA突变仍在被发现,特别是在蛋白质编码基因中;(ii)正在重新审视同质突变的致病性;(iii)一些基因教条被削弱,但没有被打破;(iv) mtDNA单倍型在人类病理学中越来越受到关注;(五)发病机制仍是一个谜。在核DNA (nDNA)突变领域,我们对基因组间通讯错误导致的疾病的理解取得了良好的进展。在导致mtDNA多次缺失和耗竭的基因中,POLG突变与人类多种临床表型和小鼠早衰有关。新的发病机制包括线粒体内膜脂质环境的改变和控制线粒体运动、裂变和融合的基因突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitochondrial medicine.

After reviewing the history of mitochondrial diseases, I follow a genetic classification to discuss new developments and old conundrums. In the field of mitochondrial DNA (mtDNA) mutations, I argue that we are not yet scraping the bottom of the barrel because: (i) new mtDNA mutations are still being discovered, especially in protein-coding genes; (ii) the pathogenicity of homoplasmic mutations is being revisited; (iii) some genetic dogmas are chipped but not broken; (iv) mtDNA haplotypes are gaining interest in human pathology; (v) pathogenesis is still largely enigmatic. In the field of nuclear DNA (nDNA) mutations, there has been good progress in our understanding of disorders due to faulty intergenomic communication. Of the genes responsible for multiple deletions and depletion of mtDNA, mutations in POLG have been associated with a great variety of clinical phenotypes in humans and to precocious aging in mice. Novel pathogenetic mechanisms include alterations in the lipid milieu of the inner mitochondrial membrane and mutations in genes controlling mitochondrial motility, fission, and fusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy. Searching for a successful HDL-based treatment strategy. Identification of cis-regulatory variations in the IL6R gene through the inheritance assessment of allelic transcription. CD1d favors MHC neighborhood, GM1 ganglioside proximity and low detergent sensitive membrane regions on the surface of B lymphocytes. Retraction notice to "Transcriptional regulation of the AT1 receptor gene in immortalized human trophoblast cells."[Biochim. Biophys. Acta 1680 (2004) 158-170].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1