两亲分子单层和双层中共存相之间的线张力

IF 8.2 1区 化学 Q1 CHEMISTRY, PHYSICAL Surface Science Reports Pub Date : 2012-06-01 DOI:10.1016/j.surfrep.2012.02.002
Indira Sriram, Daniel K. Schwartz
{"title":"两亲分子单层和双层中共存相之间的线张力","authors":"Indira Sriram,&nbsp;Daniel K. Schwartz","doi":"10.1016/j.surfrep.2012.02.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Phase coexistence is frequently observed in molecular monolayers and bilayers. The free energy<span> per unit length of phase boundaries in these quasi-two-dimensional (2D) systems is known as line tension, and is directly analogous to surface tension in three dimensions. The existence of line tension implies the possibility of 2D capillary phenomena, a fundamentally intriguing possibility. Moreover, line tension has important implications with respect to the formation and stability of nm-scale features in </span></span>thin films, ranging from lithographically-prepared molecular features in devices (e.g. sensor nanoarrays or molecular electronics) to signaling domains in </span>biological membranes (i.e. lipid rafts). It has been proposed that such nm-scale domains may have important ramifications for budding and/or fusion in </span>bilayer membranes<span><span>. Various methods have been developed to measure line tension, including observations of domain boundary fluctuations, relaxation dynamics, nucleation rates, and others. The competition between line tension and long-range forces (e.g. electrostatic<span> repulsion or curvature elasticity) can lead to a preferred equilibrium domain size, domain shape instabilities, or even unusual domain morphologies (e.g. stripe phases) near critical points. Since liquid crystalline mesophases are ubiquitous in 2D, it is not unusual for the line tension to be anisotropic; this can lead to non-circular domains exhibiting kinks and/or chirality. Recent efforts have been aimed at controlling line tension by the addition of line-active compounds that are analogous to </span></span>surfactants potentially leading to the observation of new 2D “capillary” phenomena.</span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"67 6","pages":"Pages 143-159"},"PeriodicalIF":8.2000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2012.02.002","citationCount":"29","resultStr":"{\"title\":\"Line tension between coexisting phases in monolayers and bilayers of amphiphilic molecules\",\"authors\":\"Indira Sriram,&nbsp;Daniel K. Schwartz\",\"doi\":\"10.1016/j.surfrep.2012.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Phase coexistence is frequently observed in molecular monolayers and bilayers. The free energy<span> per unit length of phase boundaries in these quasi-two-dimensional (2D) systems is known as line tension, and is directly analogous to surface tension in three dimensions. The existence of line tension implies the possibility of 2D capillary phenomena, a fundamentally intriguing possibility. Moreover, line tension has important implications with respect to the formation and stability of nm-scale features in </span></span>thin films, ranging from lithographically-prepared molecular features in devices (e.g. sensor nanoarrays or molecular electronics) to signaling domains in </span>biological membranes (i.e. lipid rafts). It has been proposed that such nm-scale domains may have important ramifications for budding and/or fusion in </span>bilayer membranes<span><span>. Various methods have been developed to measure line tension, including observations of domain boundary fluctuations, relaxation dynamics, nucleation rates, and others. The competition between line tension and long-range forces (e.g. electrostatic<span> repulsion or curvature elasticity) can lead to a preferred equilibrium domain size, domain shape instabilities, or even unusual domain morphologies (e.g. stripe phases) near critical points. Since liquid crystalline mesophases are ubiquitous in 2D, it is not unusual for the line tension to be anisotropic; this can lead to non-circular domains exhibiting kinks and/or chirality. Recent efforts have been aimed at controlling line tension by the addition of line-active compounds that are analogous to </span></span>surfactants potentially leading to the observation of new 2D “capillary” phenomena.</span></p></div>\",\"PeriodicalId\":434,\"journal\":{\"name\":\"Surface Science Reports\",\"volume\":\"67 6\",\"pages\":\"Pages 143-159\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.surfrep.2012.02.002\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167572912000106\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572912000106","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 29

摘要

在分子单层和双层中经常观察到相共存。在这些准二维(2D)系统中,每单位长度相边界的自由能被称为线张力,并且直接类似于三维的表面张力。线张力的存在意味着二维毛细现象的可能性,这是一种非常有趣的可能性。此外,线张力对薄膜中纳米级特征的形成和稳定性具有重要意义,范围从光刻制备的器件中的分子特征(例如传感器纳米阵列或分子电子学)到生物膜中的信号域(例如脂筏)。有人提出,这种纳米级结构域可能对双层膜的出芽和/或融合有重要的影响。已经开发了各种方法来测量线张力,包括观察域边界波动、弛豫动力学、成核速率等。线张力和远程力(如静电斥力或曲率弹性)之间的竞争可以导致首选的平衡域尺寸,域形状不稳定,甚至不寻常的域形态(如条纹相)接近临界点。由于液晶中间相在二维中普遍存在,因此线张力是各向异性的并不罕见;这可以导致非圆形结构域表现出扭结和/或手性。最近的努力旨在通过添加类似于表面活性剂的线活性化合物来控制线张力,这可能导致观察到新的二维“毛细”现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Line tension between coexisting phases in monolayers and bilayers of amphiphilic molecules

Phase coexistence is frequently observed in molecular monolayers and bilayers. The free energy per unit length of phase boundaries in these quasi-two-dimensional (2D) systems is known as line tension, and is directly analogous to surface tension in three dimensions. The existence of line tension implies the possibility of 2D capillary phenomena, a fundamentally intriguing possibility. Moreover, line tension has important implications with respect to the formation and stability of nm-scale features in thin films, ranging from lithographically-prepared molecular features in devices (e.g. sensor nanoarrays or molecular electronics) to signaling domains in biological membranes (i.e. lipid rafts). It has been proposed that such nm-scale domains may have important ramifications for budding and/or fusion in bilayer membranes. Various methods have been developed to measure line tension, including observations of domain boundary fluctuations, relaxation dynamics, nucleation rates, and others. The competition between line tension and long-range forces (e.g. electrostatic repulsion or curvature elasticity) can lead to a preferred equilibrium domain size, domain shape instabilities, or even unusual domain morphologies (e.g. stripe phases) near critical points. Since liquid crystalline mesophases are ubiquitous in 2D, it is not unusual for the line tension to be anisotropic; this can lead to non-circular domains exhibiting kinks and/or chirality. Recent efforts have been aimed at controlling line tension by the addition of line-active compounds that are analogous to surfactants potentially leading to the observation of new 2D “capillary” phenomena.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Science Reports
Surface Science Reports 化学-物理:凝聚态物理
CiteScore
15.90
自引率
2.00%
发文量
9
审稿时长
178 days
期刊介绍: Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.
期刊最新文献
Editorial Board Hexagonal boron nitride on metal surfaces as a support and template X-ray photoelectron spectroscopy of epitaxial films and heterostructures Editorial Board Atomic wires on substrates: Physics between one and two dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1