具有高响应和宽带光响应的Bi2Te2Se和Sb2Te3异质结构光电探测器:实验和理论分析

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2023-09-12 DOI:10.1039/D3CP03610C
Sandeep Kumar Verma, Sanjay Sharma, Gyanendra Kumar Maurya, Vidushi Gautam, Roshani Singh, Ajeet Singh, Kavindra Kandpal, Pramod Kumar, Arun Kumar and Claudia Wiemer
{"title":"具有高响应和宽带光响应的Bi2Te2Se和Sb2Te3异质结构光电探测器:实验和理论分析","authors":"Sandeep Kumar Verma, Sanjay Sharma, Gyanendra Kumar Maurya, Vidushi Gautam, Roshani Singh, Ajeet Singh, Kavindra Kandpal, Pramod Kumar, Arun Kumar and Claudia Wiemer","doi":"10.1039/D3CP03610C","DOIUrl":null,"url":null,"abstract":"<p >Topological insulators have emerged as one of the most promising candidates for the fabrication of novel electronic and optoelectronic devices due to the unique properties of nontrivial Dirac cones on the surface and a narrow bandgap in the bulk. In this work, the Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small> and Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se materials, and their heterostructure are fabricated by metal–organic chemical vapour deposition and evaporation techniques. Photodetection of these materials and their heterostructure shows that they detect light in a broadband range of 600 to 1100 nm with maximum photoresponse of Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small>, Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se and Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small>/Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se at 1100, 1000, and 1000 nm, respectively. The maximum responsivity values of Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small>, Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se, and their heterostructure are 183, 341.8, and 245.9 A W<small><sup>−1</sup></small> at 1000 nm, respectively. A computational study has also been done using density functional theory (DFT). Using the first-principles methods based on DFT, we have systematically investigated these topological insulators and their heterostructure's electronic and optical properties. The band structures of Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small> and Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se thin films (3 QL) and their heterostructure are calculated. The bandgaps of Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small> and Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se are 26.4 and 23 meV, respectively, while the Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small>/Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se heterostructure shows metallic behaviour. For the optical properties, the dielectric function's real and imaginary parts are calculated using DFT and random phase approximation (RPA). It is observed that these topological materials and their heterostructure are light absorbers in a broadband range, with maximum absorption at 1.90, 2.40, and 3.21 eV.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 36","pages":" 25008-25017"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi2Te2Se and Sb2Te3 heterostructure based photodetectors with high responsivity and broadband photoresponse: experimental and theoretical analysis\",\"authors\":\"Sandeep Kumar Verma, Sanjay Sharma, Gyanendra Kumar Maurya, Vidushi Gautam, Roshani Singh, Ajeet Singh, Kavindra Kandpal, Pramod Kumar, Arun Kumar and Claudia Wiemer\",\"doi\":\"10.1039/D3CP03610C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Topological insulators have emerged as one of the most promising candidates for the fabrication of novel electronic and optoelectronic devices due to the unique properties of nontrivial Dirac cones on the surface and a narrow bandgap in the bulk. In this work, the Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small> and Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se materials, and their heterostructure are fabricated by metal–organic chemical vapour deposition and evaporation techniques. Photodetection of these materials and their heterostructure shows that they detect light in a broadband range of 600 to 1100 nm with maximum photoresponse of Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small>, Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se and Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small>/Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se at 1100, 1000, and 1000 nm, respectively. The maximum responsivity values of Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small>, Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se, and their heterostructure are 183, 341.8, and 245.9 A W<small><sup>−1</sup></small> at 1000 nm, respectively. A computational study has also been done using density functional theory (DFT). Using the first-principles methods based on DFT, we have systematically investigated these topological insulators and their heterostructure's electronic and optical properties. The band structures of Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small> and Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se thin films (3 QL) and their heterostructure are calculated. The bandgaps of Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small> and Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se are 26.4 and 23 meV, respectively, while the Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small>/Bi<small><sub>2</sub></small>Te<small><sub>2</sub></small>Se heterostructure shows metallic behaviour. For the optical properties, the dielectric function's real and imaginary parts are calculated using DFT and random phase approximation (RPA). It is observed that these topological materials and their heterostructure are light absorbers in a broadband range, with maximum absorption at 1.90, 2.40, and 3.21 eV.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 36\",\"pages\":\" 25008-25017\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03610c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03610c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

拓扑绝缘体已成为制造新型电子和光电子器件最有前途的候选者之一,这是由于其表面非平凡狄拉克锥的独特性质和块体中的窄带隙。本文采用金属有机化学气相沉积和蒸发技术制备了Sb2Te3和Bi2Te2Se材料及其异质结构。对这些材料及其异质结构的光检测表明,它们可以在600 ~ 1100 nm的宽带范围内探测光,其中Sb2Te3、Bi2Te2Se和Sb2Te3/Bi2Te2Se的光响应分别在1100、1000和1000 nm处最大。在1000 nm处,Sb2Te3、Bi2Te2Se及其异质结构的最大响应度分别为183、341.8和245.9 A W−1。利用密度泛函理论(DFT)进行了计算研究。利用基于离散傅立叶变换的第一性原理方法,系统地研究了这些拓扑绝缘体及其异质结构的电子和光学性质。计算了Sb2Te3和Bi2Te2Se薄膜(3ql)的能带结构及其异质结构。Sb2Te3和Bi2Te2Se的带隙分别为26.4和23 meV,而Sb2Te3/Bi2Te2Se异质结构表现出金属行为。对于光学性质,采用离散傅里叶变换和随机相位近似法计算了介电函数的实部和虚部。结果表明,这些拓扑材料及其异质结构都是宽带范围内的光吸收体,最大吸收波长分别为1.90、2.40和3.21 eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bi2Te2Se and Sb2Te3 heterostructure based photodetectors with high responsivity and broadband photoresponse: experimental and theoretical analysis

Topological insulators have emerged as one of the most promising candidates for the fabrication of novel electronic and optoelectronic devices due to the unique properties of nontrivial Dirac cones on the surface and a narrow bandgap in the bulk. In this work, the Sb2Te3 and Bi2Te2Se materials, and their heterostructure are fabricated by metal–organic chemical vapour deposition and evaporation techniques. Photodetection of these materials and their heterostructure shows that they detect light in a broadband range of 600 to 1100 nm with maximum photoresponse of Sb2Te3, Bi2Te2Se and Sb2Te3/Bi2Te2Se at 1100, 1000, and 1000 nm, respectively. The maximum responsivity values of Sb2Te3, Bi2Te2Se, and their heterostructure are 183, 341.8, and 245.9 A W−1 at 1000 nm, respectively. A computational study has also been done using density functional theory (DFT). Using the first-principles methods based on DFT, we have systematically investigated these topological insulators and their heterostructure's electronic and optical properties. The band structures of Sb2Te3 and Bi2Te2Se thin films (3 QL) and their heterostructure are calculated. The bandgaps of Sb2Te3 and Bi2Te2Se are 26.4 and 23 meV, respectively, while the Sb2Te3/Bi2Te2Se heterostructure shows metallic behaviour. For the optical properties, the dielectric function's real and imaginary parts are calculated using DFT and random phase approximation (RPA). It is observed that these topological materials and their heterostructure are light absorbers in a broadband range, with maximum absorption at 1.90, 2.40, and 3.21 eV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
Beyond 22% Power Conversion Efficiency in Type-II MoSi2As4/MoGe2N4 Photovoltaic vdW Heterostructure Kinetics of tautomerisation of thiouracils and cognate species at low temperatures: theory versus experiment Investigating Valence Orbitals and Cationic Structure of 2,6-Difluoropyridine via High-Resolution VUV-MATI Spectroscopy and Franck–Condon Simulations Nonadiabatic ab initio chemical reaction dynamics for the photoisomerization reaction of 3,5-dimethylisoxazole via the S1 electronic state Simple Carbenes as Hydrogen-Bond Acceptors: Nucleophilicities and Reduced Nucleophilicities determined ab initio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1