锰掺杂β-磷酸三钙基骨再生陶瓷的理化性质及体外生物学研究

IF 1.9 4区 材料科学 Q3 Materials Science Journal of the Australian Ceramic Society Pub Date : 2023-05-12 DOI:10.1007/s41779-023-00889-5
Mehmet Can Arpak, Sibel Daglilar, Cevriye Kalkandelen, Liliana-Marinela Balescu, Hilal Turkoglu Sasmazel, Iuliana Pasuk, George E. Stan, Kagan Durukan, Oguzhan Gunduz
{"title":"锰掺杂β-磷酸三钙基骨再生陶瓷的理化性质及体外生物学研究","authors":"Mehmet Can Arpak,&nbsp;Sibel Daglilar,&nbsp;Cevriye Kalkandelen,&nbsp;Liliana-Marinela Balescu,&nbsp;Hilal Turkoglu Sasmazel,&nbsp;Iuliana Pasuk,&nbsp;George E. Stan,&nbsp;Kagan Durukan,&nbsp;Oguzhan Gunduz","doi":"10.1007/s41779-023-00889-5","DOIUrl":null,"url":null,"abstract":"<div><p>This work evaluates the effects of manganese (Mn) doping on the morpho-structural features, mechanical performance, and in vitro biological response of beta-tricalcium phosphate (β-TCP) derived bioceramics for bone tissue engineering applications. Five different Mn doping levels (i.e., 0.01%, 0.05%, 0.1%, 0.5%, and 1 wt.%) were investigated, with the β-TCP-based bioceramics being sintered at four temperatures (i.e., 1000, 1100, 1200, and 1300 °C). A densification improvement was induced when using Mn in excess of 0.05 wt.%; the densification remained stationary in the sintering temperature range of 1200 − 1300 °C. The structural analyses evidenced that all samples sintered at 1000 and 1100 °C were composed of β-TCP as major phase and hydroxyapatite (HA) as a minor constituent (~ 4–6 wt.%). At the higher temperatures (1200 and 1300 °C), the formation of α-TCP was signalled at the expense of both β-TCP and HA. The Mn doping was evidenced by lattice parameters changes. The evolution of the phase weights is linked to a complex inter-play between the capacity of the compounds to incorporate Mn and the thermal decomposition kinetics. The Mn doping induced a reduction in the mechanical performance (in terms of compressive strength, Vickers hardness and elastic modulus) of the β-TCP-based ceramics. The metabolic activity and viability of osteoblastic cells (MC3T3-E1) for the ceramics were studied in both powder and compacted pellet form. Ceramics with Mn doping levels lower than 0.1 wt.% yielded a more favorable microenvironment for the osteoblast cells with respect to the undoped β-TCP. No cytotoxic effects were recorded up to 21 days. The Mn-doped β-TCPs showed a significant increase (<i>p</i> &lt; 0.01) in alkaline phosphatase activity with respect to pure β-TCP.</p></div>","PeriodicalId":49042,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"59 4","pages":"969 - 983"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41779-023-00889-5.pdf","citationCount":"1","resultStr":"{\"title\":\"Physico-chemical characterization and in vitro biological study of manganese doped β-tricalcium phosphate-based ceramics for bone regeneration applications\",\"authors\":\"Mehmet Can Arpak,&nbsp;Sibel Daglilar,&nbsp;Cevriye Kalkandelen,&nbsp;Liliana-Marinela Balescu,&nbsp;Hilal Turkoglu Sasmazel,&nbsp;Iuliana Pasuk,&nbsp;George E. Stan,&nbsp;Kagan Durukan,&nbsp;Oguzhan Gunduz\",\"doi\":\"10.1007/s41779-023-00889-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work evaluates the effects of manganese (Mn) doping on the morpho-structural features, mechanical performance, and in vitro biological response of beta-tricalcium phosphate (β-TCP) derived bioceramics for bone tissue engineering applications. Five different Mn doping levels (i.e., 0.01%, 0.05%, 0.1%, 0.5%, and 1 wt.%) were investigated, with the β-TCP-based bioceramics being sintered at four temperatures (i.e., 1000, 1100, 1200, and 1300 °C). A densification improvement was induced when using Mn in excess of 0.05 wt.%; the densification remained stationary in the sintering temperature range of 1200 − 1300 °C. The structural analyses evidenced that all samples sintered at 1000 and 1100 °C were composed of β-TCP as major phase and hydroxyapatite (HA) as a minor constituent (~ 4–6 wt.%). At the higher temperatures (1200 and 1300 °C), the formation of α-TCP was signalled at the expense of both β-TCP and HA. The Mn doping was evidenced by lattice parameters changes. The evolution of the phase weights is linked to a complex inter-play between the capacity of the compounds to incorporate Mn and the thermal decomposition kinetics. The Mn doping induced a reduction in the mechanical performance (in terms of compressive strength, Vickers hardness and elastic modulus) of the β-TCP-based ceramics. The metabolic activity and viability of osteoblastic cells (MC3T3-E1) for the ceramics were studied in both powder and compacted pellet form. Ceramics with Mn doping levels lower than 0.1 wt.% yielded a more favorable microenvironment for the osteoblast cells with respect to the undoped β-TCP. No cytotoxic effects were recorded up to 21 days. The Mn-doped β-TCPs showed a significant increase (<i>p</i> &lt; 0.01) in alkaline phosphatase activity with respect to pure β-TCP.</p></div>\",\"PeriodicalId\":49042,\"journal\":{\"name\":\"Journal of the Australian Ceramic Society\",\"volume\":\"59 4\",\"pages\":\"969 - 983\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41779-023-00889-5.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41779-023-00889-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-023-00889-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

摘要

本研究评估了锰(Mn)掺杂对用于骨组织工程的β-磷酸三钙(β-TCP)衍生生物陶瓷的形态结构特征、力学性能和体外生物学反应的影响。研究了5种不同Mn掺杂水平(0.01%、0.05%、0.1%、0.5%和1% wt.%),并在4种温度(1000、1100、1200和1300℃)下烧结β- tcp基生物陶瓷。当Mn含量超过0.05 wt.%时,致密性得到改善;在1200 ~ 1300℃的烧结温度范围内,致密化保持稳定。结构分析表明,在1000℃和1100℃下烧结的样品均以β-TCP为主要相,羟基磷灰石(HA)为次要组分(~ 4-6 wt.%)。在较高的温度下(1200和1300℃),α-TCP的形成以β-TCP和HA的损失为代价。晶格参数的变化证明了Mn的掺杂。相重量的演变与化合物吸收Mn的能力和热分解动力学之间的复杂相互作用有关。Mn掺杂导致β- tcp基陶瓷的力学性能(抗压强度、维氏硬度和弹性模量)降低。研究了成骨细胞(MC3T3-E1)在陶瓷中的代谢活性和活力。相对于未掺杂的β-TCP, Mn掺杂水平低于0.1 wt.%的陶瓷为成骨细胞提供了更有利的微环境。21天内未见细胞毒性作用。mn掺杂的β-TCP与纯β-TCP相比,碱性磷酸酶活性显著增加(p < 0.01)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physico-chemical characterization and in vitro biological study of manganese doped β-tricalcium phosphate-based ceramics for bone regeneration applications

This work evaluates the effects of manganese (Mn) doping on the morpho-structural features, mechanical performance, and in vitro biological response of beta-tricalcium phosphate (β-TCP) derived bioceramics for bone tissue engineering applications. Five different Mn doping levels (i.e., 0.01%, 0.05%, 0.1%, 0.5%, and 1 wt.%) were investigated, with the β-TCP-based bioceramics being sintered at four temperatures (i.e., 1000, 1100, 1200, and 1300 °C). A densification improvement was induced when using Mn in excess of 0.05 wt.%; the densification remained stationary in the sintering temperature range of 1200 − 1300 °C. The structural analyses evidenced that all samples sintered at 1000 and 1100 °C were composed of β-TCP as major phase and hydroxyapatite (HA) as a minor constituent (~ 4–6 wt.%). At the higher temperatures (1200 and 1300 °C), the formation of α-TCP was signalled at the expense of both β-TCP and HA. The Mn doping was evidenced by lattice parameters changes. The evolution of the phase weights is linked to a complex inter-play between the capacity of the compounds to incorporate Mn and the thermal decomposition kinetics. The Mn doping induced a reduction in the mechanical performance (in terms of compressive strength, Vickers hardness and elastic modulus) of the β-TCP-based ceramics. The metabolic activity and viability of osteoblastic cells (MC3T3-E1) for the ceramics were studied in both powder and compacted pellet form. Ceramics with Mn doping levels lower than 0.1 wt.% yielded a more favorable microenvironment for the osteoblast cells with respect to the undoped β-TCP. No cytotoxic effects were recorded up to 21 days. The Mn-doped β-TCPs showed a significant increase (p < 0.01) in alkaline phosphatase activity with respect to pure β-TCP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Australian Ceramic Society
Journal of the Australian Ceramic Society MATERIALS SCIENCE, CERAMICS-
CiteScore
3.20
自引率
5.30%
发文量
1
审稿时长
>12 weeks
期刊介绍: Publishes high quality research and technical papers in all areas of ceramic and related materials Spans the broad and growing fields of ceramic technology, material science and bioceramics Chronicles new advances in ceramic materials, manufacturing processes and applications Journal of the Australian Ceramic Society since 1965 Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted
期刊最新文献
The effect of size and type of alumina nanopowder phase on the transparency and bending strength of bodies sintered with MgO and La2O3 sintering aid Electrophoretic deposition of manganese oxide nanoparticles on aluminum substrate under different electrophoretic conditions Structure and electrical properties of Ln2(MO4)3(Ln = La or Sm; M = W or Mo) nanoceramics On tungsten barium phosphate glasses: Elastic moduli, gamma-ray shielding properties as well as transmission factor (TF) Structural and electrical charge transport properties in oxygen-deficient PbTiO3−δ ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1