多核铂类药物:化疗新范式。

Nial J Wheate, J Grant Collins
{"title":"多核铂类药物:化疗新范式。","authors":"Nial J Wheate,&nbsp;J Grant Collins","doi":"10.2174/1568011053765994","DOIUrl":null,"url":null,"abstract":"<p><p>The initial report of the therapeutic anticancer properties of a di-nuclear platinum complex in 1988 started a new paradigm in platinum based chemotherapy. Several multi-nuclear platinum complexes have entered clinical trials in recent years, with varying results. This group of charged complexes, consisting of di- and tri-nuclear compounds linked by aliphatic ligands, many with hydrogen bonding functionality, are able to overcome cisplatin and carboplatin resistance in many important human cancer cell lines. The adducts they form with DNA--which are, to some extent, affected by their pre-covalent association--are the reason for their increased cytotoxicity, and are distinctly different from those formed by cisplatin. Multi-nuclear platinum DNA adducts are broadly defined as flexible, non-directional and mainly interstrand cross-links. These complexes are also able to induce conformational changes in DNA, particularly the conversion from B-type to Z- and A-type. While these complexes are much more cytotoxic than cisplatin, they are also highly toxic. The maximum tolerated doses range from 0.006 to 1.1 mg/m(2) which is 10 to 100 fold lower than cisplatin. BBR3464 has shown in vivo activity at its MTD in several pre-clinical and clinical trials; however, recent phase II trials have shown that BBR3464, and other multi-nuclear platinum drugs, did not yield results substantially different from cisplatin, possibly due to their binding and degradation by human plasma proteins. This review will look at the success, and limitations, of multi-nuclear platinum drugs, and discuss their future potential as anti-cancer agents.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"5 3","pages":"267-79"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011053765994","citationCount":"91","resultStr":"{\"title\":\"Multi-nuclear platinum drugs: a new paradigm in chemotherapy.\",\"authors\":\"Nial J Wheate,&nbsp;J Grant Collins\",\"doi\":\"10.2174/1568011053765994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The initial report of the therapeutic anticancer properties of a di-nuclear platinum complex in 1988 started a new paradigm in platinum based chemotherapy. Several multi-nuclear platinum complexes have entered clinical trials in recent years, with varying results. This group of charged complexes, consisting of di- and tri-nuclear compounds linked by aliphatic ligands, many with hydrogen bonding functionality, are able to overcome cisplatin and carboplatin resistance in many important human cancer cell lines. The adducts they form with DNA--which are, to some extent, affected by their pre-covalent association--are the reason for their increased cytotoxicity, and are distinctly different from those formed by cisplatin. Multi-nuclear platinum DNA adducts are broadly defined as flexible, non-directional and mainly interstrand cross-links. These complexes are also able to induce conformational changes in DNA, particularly the conversion from B-type to Z- and A-type. While these complexes are much more cytotoxic than cisplatin, they are also highly toxic. The maximum tolerated doses range from 0.006 to 1.1 mg/m(2) which is 10 to 100 fold lower than cisplatin. BBR3464 has shown in vivo activity at its MTD in several pre-clinical and clinical trials; however, recent phase II trials have shown that BBR3464, and other multi-nuclear platinum drugs, did not yield results substantially different from cisplatin, possibly due to their binding and degradation by human plasma proteins. This review will look at the success, and limitations, of multi-nuclear platinum drugs, and discuss their future potential as anti-cancer agents.</p>\",\"PeriodicalId\":10914,\"journal\":{\"name\":\"Current medicinal chemistry. Anti-cancer agents\",\"volume\":\"5 3\",\"pages\":\"267-79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/1568011053765994\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry. Anti-cancer agents\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1568011053765994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry. Anti-cancer agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1568011053765994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

1988年,一种双核铂配合物的抗癌治疗特性的首次报道开启了铂基化疗的新范式。近年来,几种多核铂配合物进入临床试验,结果各不相同。这组带电配合物由脂肪族配体连接的二核和三核化合物组成,许多具有氢键功能,能够在许多重要的人类癌细胞系中克服顺铂和卡铂耐药性。它们与DNA形成的加合物——在某种程度上受其共价前结合的影响——是它们增加细胞毒性的原因,并且与顺铂形成的加合物明显不同。多核铂DNA加合物被广泛定义为灵活的、无方向性的、主要是链间交联的。这些复合物还能够诱导DNA的构象变化,特别是从b型到Z型和a型的转换。虽然这些复合物的细胞毒性比顺铂大得多,但它们也是剧毒的。最大耐受剂量范围为0.006至1.1 mg/m(2),比顺铂低10至100倍。在一些临床前和临床试验中,BBR3464已显示出其MTD的体内活性;然而,最近的II期试验表明,BBR3464和其他多核铂类药物并没有产生与顺铂有本质差异的结果,这可能是由于它们与人血浆蛋白的结合和降解。本文将介绍多核铂类药物的成功和局限性,并讨论其作为抗癌药物的未来潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-nuclear platinum drugs: a new paradigm in chemotherapy.

The initial report of the therapeutic anticancer properties of a di-nuclear platinum complex in 1988 started a new paradigm in platinum based chemotherapy. Several multi-nuclear platinum complexes have entered clinical trials in recent years, with varying results. This group of charged complexes, consisting of di- and tri-nuclear compounds linked by aliphatic ligands, many with hydrogen bonding functionality, are able to overcome cisplatin and carboplatin resistance in many important human cancer cell lines. The adducts they form with DNA--which are, to some extent, affected by their pre-covalent association--are the reason for their increased cytotoxicity, and are distinctly different from those formed by cisplatin. Multi-nuclear platinum DNA adducts are broadly defined as flexible, non-directional and mainly interstrand cross-links. These complexes are also able to induce conformational changes in DNA, particularly the conversion from B-type to Z- and A-type. While these complexes are much more cytotoxic than cisplatin, they are also highly toxic. The maximum tolerated doses range from 0.006 to 1.1 mg/m(2) which is 10 to 100 fold lower than cisplatin. BBR3464 has shown in vivo activity at its MTD in several pre-clinical and clinical trials; however, recent phase II trials have shown that BBR3464, and other multi-nuclear platinum drugs, did not yield results substantially different from cisplatin, possibly due to their binding and degradation by human plasma proteins. This review will look at the success, and limitations, of multi-nuclear platinum drugs, and discuss their future potential as anti-cancer agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Lanthanides as anticancer agents. Current drug therapy for prostate cancer: an overview. Sulfo-quinovosyl-acyl-glycerol (SQAG), a eukaryotic DNA polymerase inhibitor and anti-cancer agent. Lycopene: a review of its potential as an anticancer agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1