自闭症基因组计划:目标和策略。

Diane Hu-Lince, David W Craig, Matthew J Huentelman, Dietrich A Stephan
{"title":"自闭症基因组计划:目标和策略。","authors":"Diane Hu-Lince,&nbsp;David W Craig,&nbsp;Matthew J Huentelman,&nbsp;Dietrich A Stephan","doi":"10.2165/00129785-200505040-00004","DOIUrl":null,"url":null,"abstract":"<p><p>Autism is a complex neurodevelopmental disorder with a broad spectrum of symptoms and varying severity. Currently, no biological diagnosis exists. Although there has been a significant increase in autism genetics research recently, validated susceptibility genes for the most common, sporadic forms of autistic disorder, as well as familial autism, have yet to be identified. The identification of autism-susceptibility genes will not only assist in the identification and/or development of better medications that can help improve the health and neurodevelopment of children with autism, but will also allow for better perinatal diagnosis. The Autism Genome Project (AGP) is a large-scale, collaborative genetics research project initiated by the National Alliance for Autism Research and the National Institutes of Health, and is aimed at sifting through the human genome in search of autism-susceptibility genes. Phase I of the AGP will consist of genome-wide scans utilizing both SNP array and microsatellite technologies. Linkage analysis will subsequently be performed on approximately 1500 pedigrees as will downstream fine-mapping and sequencing of the critical linkage intervals. Ultimately, the vision will be to identify the exact nucleotide variants within genes which give rise to predisposition. The AGP intends to move the field of autism clinical management forward by answering questions about the causal mechanisms underlying the pathophysiology of autism. From this knowledge, therapeutic targets for drug treatments, and ultimately, a newborn screening diagnostic that would allow for early intervention, can begin to be developed.</p>","PeriodicalId":72171,"journal":{"name":"American journal of pharmacogenomics : genomics-related research in drug development and clinical practice","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2165/00129785-200505040-00004","citationCount":"88","resultStr":"{\"title\":\"The Autism Genome Project: goals and strategies.\",\"authors\":\"Diane Hu-Lince,&nbsp;David W Craig,&nbsp;Matthew J Huentelman,&nbsp;Dietrich A Stephan\",\"doi\":\"10.2165/00129785-200505040-00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autism is a complex neurodevelopmental disorder with a broad spectrum of symptoms and varying severity. Currently, no biological diagnosis exists. Although there has been a significant increase in autism genetics research recently, validated susceptibility genes for the most common, sporadic forms of autistic disorder, as well as familial autism, have yet to be identified. The identification of autism-susceptibility genes will not only assist in the identification and/or development of better medications that can help improve the health and neurodevelopment of children with autism, but will also allow for better perinatal diagnosis. The Autism Genome Project (AGP) is a large-scale, collaborative genetics research project initiated by the National Alliance for Autism Research and the National Institutes of Health, and is aimed at sifting through the human genome in search of autism-susceptibility genes. Phase I of the AGP will consist of genome-wide scans utilizing both SNP array and microsatellite technologies. Linkage analysis will subsequently be performed on approximately 1500 pedigrees as will downstream fine-mapping and sequencing of the critical linkage intervals. Ultimately, the vision will be to identify the exact nucleotide variants within genes which give rise to predisposition. The AGP intends to move the field of autism clinical management forward by answering questions about the causal mechanisms underlying the pathophysiology of autism. From this knowledge, therapeutic targets for drug treatments, and ultimately, a newborn screening diagnostic that would allow for early intervention, can begin to be developed.</p>\",\"PeriodicalId\":72171,\"journal\":{\"name\":\"American journal of pharmacogenomics : genomics-related research in drug development and clinical practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2165/00129785-200505040-00004\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of pharmacogenomics : genomics-related research in drug development and clinical practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2165/00129785-200505040-00004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of pharmacogenomics : genomics-related research in drug development and clinical practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2165/00129785-200505040-00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

自闭症是一种复杂的神经发育障碍,具有广泛的症状和不同的严重程度。目前尚无生物学诊断。尽管最近自闭症遗传学研究有了显著的增长,但最常见的、散发形式的自闭症以及家族性自闭症的有效易感基因尚未被确定。自闭症易感基因的识别不仅有助于识别和/或开发更好的药物,帮助改善自闭症儿童的健康和神经发育,而且还将允许更好的围产期诊断。自闭症基因组计划(AGP)是由美国国家自闭症研究联盟和美国国立卫生研究院发起的一项大规模的遗传学合作研究项目,旨在筛选人类基因组,寻找自闭症易感基因。AGP的第一阶段将包括利用SNP阵列和微卫星技术进行全基因组扫描。随后将对大约1500个家系进行连锁分析,并对关键连锁区间进行下游精细定位和测序。最终,我们的愿景将是确定基因中导致易感性的核苷酸变异。AGP旨在通过回答自闭症病理生理学背后的因果机制问题,推动自闭症临床管理领域向前发展。根据这些知识,药物治疗的治疗目标,以及最终允许早期干预的新生儿筛查诊断,可以开始开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Autism Genome Project: goals and strategies.

Autism is a complex neurodevelopmental disorder with a broad spectrum of symptoms and varying severity. Currently, no biological diagnosis exists. Although there has been a significant increase in autism genetics research recently, validated susceptibility genes for the most common, sporadic forms of autistic disorder, as well as familial autism, have yet to be identified. The identification of autism-susceptibility genes will not only assist in the identification and/or development of better medications that can help improve the health and neurodevelopment of children with autism, but will also allow for better perinatal diagnosis. The Autism Genome Project (AGP) is a large-scale, collaborative genetics research project initiated by the National Alliance for Autism Research and the National Institutes of Health, and is aimed at sifting through the human genome in search of autism-susceptibility genes. Phase I of the AGP will consist of genome-wide scans utilizing both SNP array and microsatellite technologies. Linkage analysis will subsequently be performed on approximately 1500 pedigrees as will downstream fine-mapping and sequencing of the critical linkage intervals. Ultimately, the vision will be to identify the exact nucleotide variants within genes which give rise to predisposition. The AGP intends to move the field of autism clinical management forward by answering questions about the causal mechanisms underlying the pathophysiology of autism. From this knowledge, therapeutic targets for drug treatments, and ultimately, a newborn screening diagnostic that would allow for early intervention, can begin to be developed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards molecular medicine: a case for a biological periodic table. Genetic testing in Crohn disease: utility in individualizing patient management. Identifying DNA methylation biomarkers of cancer drug response. The Autism Genome Project: goals and strategies. Oncogenes as novel targets for cancer therapy (part II): Intermediate signaling molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1