肿瘤组织中用于传递治疗基因的特定靶点。

Michael Günther, Ernst Wagner, Manfred Ogris
{"title":"肿瘤组织中用于传递治疗基因的特定靶点。","authors":"Michael Günther,&nbsp;Ernst Wagner,&nbsp;Manfred Ogris","doi":"10.2174/1568011053174855","DOIUrl":null,"url":null,"abstract":"<p><p>Gene therapy is part of a growing field in molecular medicine, which will gain importance in the treatment of human diseases. Until now, almost two thirds of all clinical trials performed in gene therapy are directed against Cancer As solid tumors exceeding a certain size rely on blood supply, the administration of particulate gene delivery vectors via the bloodstream is a promising concept. Tumor cells and the tumor vasculature both offer specific molecular targets, which can be utilized for the site directed delivery of therapeutic genes. Passive targeting of macromolecular drugs including gene delivery vectors to tumors can be achieved by the so called enhanced permeability and retention (EPR) effect. The specificity can be markedly enhanced when tumor targeting ligands are used. Viral vectors, which usually do not have a natural tropism for tumor tissue, were generated to carry tumor targeting molecules on their surface. Synthetic gene delivery vectors, based on cationic lipids or cationic polymers were biochemically modified to incorporate ligands specific for tumor cells or tumor vasculature. For systemic application, these delivery systems have to fulfill certain conditions. The delivery vector should not induce any immunogenic and inflammatory responses. Several studies were conducted to reduce the immunogenicity of viral vectors; surface modification of non-viral gene delivery systems reduced their non-specific interaction with blood components. On the genetic level, tumor specific promoters add additional layers of specificity restricting the transgene expression to the tumor tissue. This review will cover the systemic application of particulate gene transfer vectors targeted to tumors and will give an overview of therapeutic concepts for cancer gene therapy.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"5 2","pages":"157-71"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011053174855","citationCount":"45","resultStr":"{\"title\":\"Specific targets in tumor tissue for the delivery of therapeutic genes.\",\"authors\":\"Michael Günther,&nbsp;Ernst Wagner,&nbsp;Manfred Ogris\",\"doi\":\"10.2174/1568011053174855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene therapy is part of a growing field in molecular medicine, which will gain importance in the treatment of human diseases. Until now, almost two thirds of all clinical trials performed in gene therapy are directed against Cancer As solid tumors exceeding a certain size rely on blood supply, the administration of particulate gene delivery vectors via the bloodstream is a promising concept. Tumor cells and the tumor vasculature both offer specific molecular targets, which can be utilized for the site directed delivery of therapeutic genes. Passive targeting of macromolecular drugs including gene delivery vectors to tumors can be achieved by the so called enhanced permeability and retention (EPR) effect. The specificity can be markedly enhanced when tumor targeting ligands are used. Viral vectors, which usually do not have a natural tropism for tumor tissue, were generated to carry tumor targeting molecules on their surface. Synthetic gene delivery vectors, based on cationic lipids or cationic polymers were biochemically modified to incorporate ligands specific for tumor cells or tumor vasculature. For systemic application, these delivery systems have to fulfill certain conditions. The delivery vector should not induce any immunogenic and inflammatory responses. Several studies were conducted to reduce the immunogenicity of viral vectors; surface modification of non-viral gene delivery systems reduced their non-specific interaction with blood components. On the genetic level, tumor specific promoters add additional layers of specificity restricting the transgene expression to the tumor tissue. This review will cover the systemic application of particulate gene transfer vectors targeted to tumors and will give an overview of therapeutic concepts for cancer gene therapy.</p>\",\"PeriodicalId\":10914,\"journal\":{\"name\":\"Current medicinal chemistry. Anti-cancer agents\",\"volume\":\"5 2\",\"pages\":\"157-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/1568011053174855\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry. Anti-cancer agents\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1568011053174855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry. Anti-cancer agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1568011053174855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

基因治疗是分子医学的一个新兴领域,它将在人类疾病的治疗中发挥重要作用。到目前为止,几乎三分之二的基因治疗临床试验都是针对癌症的,因为超过一定大小的实体肿瘤依赖于血液供应,通过血液给药颗粒基因传递载体是一个很有前途的概念。肿瘤细胞和肿瘤血管都提供了特定的分子靶点,可用于治疗基因的定点递送。包括基因传递载体在内的大分子药物的被动靶向可以通过所谓的增强渗透性和保留性(EPR)效应来实现。使用肿瘤靶向配体可显著提高特异性。病毒载体通常对肿瘤组织没有天然的趋向性,它们的产生是为了在其表面携带肿瘤靶向分子。基于阳离子脂质或阳离子聚合物的合成基因传递载体经过生物化学修饰,加入肿瘤细胞或肿瘤血管的特异性配体。为了系统应用,这些输送系统必须满足一定的条件。传递载体不应引起任何免疫原性和炎症反应。进行了一些研究以降低病毒载体的免疫原性;非病毒基因传递系统的表面修饰减少了它们与血液成分的非特异性相互作用。在遗传水平上,肿瘤特异性启动子增加了额外的特异性层,限制了转基因在肿瘤组织中的表达。本文将介绍靶向肿瘤的颗粒基因转移载体的系统应用,并对肿瘤基因治疗的治疗概念进行概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Specific targets in tumor tissue for the delivery of therapeutic genes.

Gene therapy is part of a growing field in molecular medicine, which will gain importance in the treatment of human diseases. Until now, almost two thirds of all clinical trials performed in gene therapy are directed against Cancer As solid tumors exceeding a certain size rely on blood supply, the administration of particulate gene delivery vectors via the bloodstream is a promising concept. Tumor cells and the tumor vasculature both offer specific molecular targets, which can be utilized for the site directed delivery of therapeutic genes. Passive targeting of macromolecular drugs including gene delivery vectors to tumors can be achieved by the so called enhanced permeability and retention (EPR) effect. The specificity can be markedly enhanced when tumor targeting ligands are used. Viral vectors, which usually do not have a natural tropism for tumor tissue, were generated to carry tumor targeting molecules on their surface. Synthetic gene delivery vectors, based on cationic lipids or cationic polymers were biochemically modified to incorporate ligands specific for tumor cells or tumor vasculature. For systemic application, these delivery systems have to fulfill certain conditions. The delivery vector should not induce any immunogenic and inflammatory responses. Several studies were conducted to reduce the immunogenicity of viral vectors; surface modification of non-viral gene delivery systems reduced their non-specific interaction with blood components. On the genetic level, tumor specific promoters add additional layers of specificity restricting the transgene expression to the tumor tissue. This review will cover the systemic application of particulate gene transfer vectors targeted to tumors and will give an overview of therapeutic concepts for cancer gene therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Lanthanides as anticancer agents. Current drug therapy for prostate cancer: an overview. Sulfo-quinovosyl-acyl-glycerol (SQAG), a eukaryotic DNA polymerase inhibitor and anti-cancer agent. Lycopene: a review of its potential as an anticancer agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1