血小板糖蛋白IIb/IIIa多态性与冠状动脉疾病:对临床实践的影响

Augusto Di Castelnuovo, Giovanni de Gaetano, Maria Benedetta Donati, Licia Iacoviello
{"title":"血小板糖蛋白IIb/IIIa多态性与冠状动脉疾病:对临床实践的影响","authors":"Augusto Di Castelnuovo,&nbsp;Giovanni de Gaetano,&nbsp;Maria Benedetta Donati,&nbsp;Licia Iacoviello","doi":"10.2165/00129785-200505020-00002","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane glycoprotein (GP) IIb/IIIa plays a major role in platelet function; indeed it enables stimulated platelets to bind fibrinogen and related adhesive proteins, a process that is considered key in the development of thrombosis. The gene encoding GPIIIa (ITGB3, also known as GP3A) shows a common platelet antigen polymorphism [PL(A1)/PL(A2); expressed by alleles ITGB3*001 and ITGB3*002] that was variably associated with vascular disease. In 1996, the presence of the PL(A2) allele (ITGB3*001) was first reported to increase the risk of coronary heart disease. Shortly after, the interest in this study was increased by the publication of a case report on the death from myocardial infarction of an Olympic athlete who was found to be homozygous for the PL(A2) allele. Overviews of the published studies on the PL(A1)/PL(A2) polymorphism and coronary risk suggest an influence of the PL(A2) allele on the clinical phenotype and the interaction with other environmental factors. In particular, the strongest effect of the ITGB3 PL(A2) allele was expressed on the risk of occlusion after revascularization procedures, mainly after stent implantation, a condition in which platelet activation is more important as compared with other stenotic mechanisms. In the future, the identification of patients who are particularly responsive to GPIIb/IIIa antagonist therapy (e.g. those with the PL(A2) allele) might help to improve the treatment efficacy in this relatively small population. In a mechanism possibly unrelated to its effect on platelet reactivity to aggregating stimuli, the presence of the PL(A2) allele might influence the antiaggregatory effect of platelet inhibitory drugs such as aspirin (acetylsalicylic acid), clopidogrel, and GPIIb/IIIa antagonists. Although interesting, current data does not yet have direct clinical implications for patient risk identification and drug therapy tailoring. Larger studies are necessary to define the role of the PL(A2) allele in more homogeneous groups where platelet GPIIb/IIIa activation might be particularly relevant.</p>","PeriodicalId":72171,"journal":{"name":"American journal of pharmacogenomics : genomics-related research in drug development and clinical practice","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2165/00129785-200505020-00002","citationCount":"28","resultStr":"{\"title\":\"Platelet glycoprotein IIb/IIIa polymorphism and coronary artery disease: implications for clinical practice.\",\"authors\":\"Augusto Di Castelnuovo,&nbsp;Giovanni de Gaetano,&nbsp;Maria Benedetta Donati,&nbsp;Licia Iacoviello\",\"doi\":\"10.2165/00129785-200505020-00002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Membrane glycoprotein (GP) IIb/IIIa plays a major role in platelet function; indeed it enables stimulated platelets to bind fibrinogen and related adhesive proteins, a process that is considered key in the development of thrombosis. The gene encoding GPIIIa (ITGB3, also known as GP3A) shows a common platelet antigen polymorphism [PL(A1)/PL(A2); expressed by alleles ITGB3*001 and ITGB3*002] that was variably associated with vascular disease. In 1996, the presence of the PL(A2) allele (ITGB3*001) was first reported to increase the risk of coronary heart disease. Shortly after, the interest in this study was increased by the publication of a case report on the death from myocardial infarction of an Olympic athlete who was found to be homozygous for the PL(A2) allele. Overviews of the published studies on the PL(A1)/PL(A2) polymorphism and coronary risk suggest an influence of the PL(A2) allele on the clinical phenotype and the interaction with other environmental factors. In particular, the strongest effect of the ITGB3 PL(A2) allele was expressed on the risk of occlusion after revascularization procedures, mainly after stent implantation, a condition in which platelet activation is more important as compared with other stenotic mechanisms. In the future, the identification of patients who are particularly responsive to GPIIb/IIIa antagonist therapy (e.g. those with the PL(A2) allele) might help to improve the treatment efficacy in this relatively small population. In a mechanism possibly unrelated to its effect on platelet reactivity to aggregating stimuli, the presence of the PL(A2) allele might influence the antiaggregatory effect of platelet inhibitory drugs such as aspirin (acetylsalicylic acid), clopidogrel, and GPIIb/IIIa antagonists. Although interesting, current data does not yet have direct clinical implications for patient risk identification and drug therapy tailoring. Larger studies are necessary to define the role of the PL(A2) allele in more homogeneous groups where platelet GPIIb/IIIa activation might be particularly relevant.</p>\",\"PeriodicalId\":72171,\"journal\":{\"name\":\"American journal of pharmacogenomics : genomics-related research in drug development and clinical practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2165/00129785-200505020-00002\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of pharmacogenomics : genomics-related research in drug development and clinical practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2165/00129785-200505020-00002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of pharmacogenomics : genomics-related research in drug development and clinical practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2165/00129785-200505020-00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

膜糖蛋白(GP) IIb/IIIa在血小板功能中起主要作用;事实上,它使受刺激的血小板结合纤维蛋白原和相关的粘附蛋白,这一过程被认为是血栓形成的关键。编码GPIIIa的基因(ITGB3,也称为GP3A)显示出共同血小板抗原多态性[PL(A1)/PL(A2);由与血管疾病可变相关的等位基因ITGB3*001和ITGB3*002表达。1996年,PL(A2)等位基因(ITGB3*001)的存在首次被报道可增加冠心病的风险。不久之后,对这项研究的兴趣增加了,因为一篇关于一名奥林匹克运动员心肌梗死死亡的病例报告的发表,该运动员被发现是PL(A2)等位基因的纯合子。对已发表的PL(A1)/PL(A2)多态性与冠状动脉风险的研究综述表明,PL(A2)等位基因对临床表型的影响以及与其他环境因素的相互作用。特别是,ITGB3 PL(A2)等位基因对血管重建术后闭塞风险的影响最强,主要是在支架植入术后,在这种情况下,血小板激活比其他狭窄机制更重要。在未来,识别对GPIIb/IIIa拮抗剂治疗特别敏感的患者(例如具有PL(A2)等位基因的患者)可能有助于提高这一相对较小人群的治疗效果。PL(A2)等位基因的存在可能会影响血小板抑制药物(如阿司匹林(乙酰水杨酸)、氯吡格雷和GPIIb/IIIa拮抗剂)的抗聚集作用,其机制可能与其对血小板聚集刺激反应性的影响无关。虽然很有趣,但目前的数据尚未对患者风险识别和药物治疗定制具有直接的临床意义。需要更大规模的研究来确定PL(A2)等位基因在更均匀的群体中的作用,其中血小板GPIIb/IIIa激活可能特别相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Platelet glycoprotein IIb/IIIa polymorphism and coronary artery disease: implications for clinical practice.

Membrane glycoprotein (GP) IIb/IIIa plays a major role in platelet function; indeed it enables stimulated platelets to bind fibrinogen and related adhesive proteins, a process that is considered key in the development of thrombosis. The gene encoding GPIIIa (ITGB3, also known as GP3A) shows a common platelet antigen polymorphism [PL(A1)/PL(A2); expressed by alleles ITGB3*001 and ITGB3*002] that was variably associated with vascular disease. In 1996, the presence of the PL(A2) allele (ITGB3*001) was first reported to increase the risk of coronary heart disease. Shortly after, the interest in this study was increased by the publication of a case report on the death from myocardial infarction of an Olympic athlete who was found to be homozygous for the PL(A2) allele. Overviews of the published studies on the PL(A1)/PL(A2) polymorphism and coronary risk suggest an influence of the PL(A2) allele on the clinical phenotype and the interaction with other environmental factors. In particular, the strongest effect of the ITGB3 PL(A2) allele was expressed on the risk of occlusion after revascularization procedures, mainly after stent implantation, a condition in which platelet activation is more important as compared with other stenotic mechanisms. In the future, the identification of patients who are particularly responsive to GPIIb/IIIa antagonist therapy (e.g. those with the PL(A2) allele) might help to improve the treatment efficacy in this relatively small population. In a mechanism possibly unrelated to its effect on platelet reactivity to aggregating stimuli, the presence of the PL(A2) allele might influence the antiaggregatory effect of platelet inhibitory drugs such as aspirin (acetylsalicylic acid), clopidogrel, and GPIIb/IIIa antagonists. Although interesting, current data does not yet have direct clinical implications for patient risk identification and drug therapy tailoring. Larger studies are necessary to define the role of the PL(A2) allele in more homogeneous groups where platelet GPIIb/IIIa activation might be particularly relevant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards molecular medicine: a case for a biological periodic table. Genetic testing in Crohn disease: utility in individualizing patient management. Identifying DNA methylation biomarkers of cancer drug response. The Autism Genome Project: goals and strategies. Oncogenes as novel targets for cancer therapy (part II): Intermediate signaling molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1