{"title":"从监测系统中报告病例发生率,其操作病例定义为预测值未知的阳性。","authors":"Scott R Kegler","doi":"10.1186/1742-5573-2-7","DOIUrl":null,"url":null,"abstract":"<p><p>When reporting incidence rate estimates for relatively rare health conditions, associated case counts are often assumed to follow a Poisson distribution. Case counts obtained from large-scale electronic surveillance systems are often inflated by the presence of false positives, however, and adjusted case counts based on the results of a validation sample will have variances which are hyper-Poisson. This paper presents a simple method for constructing interval estimates for incidence rates based on case counts that are adjusted downward using an estimate of the predictive value positive of the surveillance case definition.</p>","PeriodicalId":87082,"journal":{"name":"Epidemiologic perspectives & innovations : EP+I","volume":"2 ","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1215500/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reporting incidence from a surveillance system with an operational case definition of unknown predictive value positive.\",\"authors\":\"Scott R Kegler\",\"doi\":\"10.1186/1742-5573-2-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When reporting incidence rate estimates for relatively rare health conditions, associated case counts are often assumed to follow a Poisson distribution. Case counts obtained from large-scale electronic surveillance systems are often inflated by the presence of false positives, however, and adjusted case counts based on the results of a validation sample will have variances which are hyper-Poisson. This paper presents a simple method for constructing interval estimates for incidence rates based on case counts that are adjusted downward using an estimate of the predictive value positive of the surveillance case definition.</p>\",\"PeriodicalId\":87082,\"journal\":{\"name\":\"Epidemiologic perspectives & innovations : EP+I\",\"volume\":\"2 \",\"pages\":\"7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1215500/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiologic perspectives & innovations : EP+I\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1742-5573-2-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic perspectives & innovations : EP+I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1742-5573-2-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reporting incidence from a surveillance system with an operational case definition of unknown predictive value positive.
When reporting incidence rate estimates for relatively rare health conditions, associated case counts are often assumed to follow a Poisson distribution. Case counts obtained from large-scale electronic surveillance systems are often inflated by the presence of false positives, however, and adjusted case counts based on the results of a validation sample will have variances which are hyper-Poisson. This paper presents a simple method for constructing interval estimates for incidence rates based on case counts that are adjusted downward using an estimate of the predictive value positive of the surveillance case definition.