木鼠后跖骨和指骨长度比的两性二态性。

Barbara Leoni, Luca Canova, Nicola Saino
{"title":"木鼠后跖骨和指骨长度比的两性二态性。","authors":"Barbara Leoni,&nbsp;Luca Canova,&nbsp;Nicola Saino","doi":"10.1002/ar.a.20226","DOIUrl":null,"url":null,"abstract":"<p><p>Relative length of metapodials and digits is sexually dimorphic in most primates and one rodent and one bird species studied so far. Recently, interest in digit ratios has increased because of their correlation with diverse physiological, psychological, and performance traits in humans. These correlations may reflect the effect of androgens during early ontogeny on digit development and their long-term organizational effects on extragenital organs. Inter- and intrasexual variation in digit ratios may be ultimately controlled by modulation of the expression of Hoxa and Hoxd genes. Since Hox genes are conserved in vertebrates, similar patterns of sex-related variation in length ratios may be expected across taxa. In fact, sexual dimorphism in length ratios has been documented for metapodials or digit bones in nonhuman vertebrates, but the specific pattern of sex-related variation varies considerably. However, no study has investigated sexual dimorphism in length ratios between all ray segments (metapodials plus phalanges) using osteometrical measures. In an outbred wild population of wood mice (Apodemus sylvaticus), we found extensive sex-related variation in ratios between osteometrical length of the phalanges, but not metatarsals, similar to that recorded on undissected digits of humans and laboratory mice. Most sexually dimorphic ratios involved the second digit. We found very weak evidence for directional asymmetry in length ratios. The present study shows that sex-related variation in length ratios between digit segments observed in mammals may actually depend on relative bone length. Hence, other species may be used to investigate the causal and semeiotic implications of variation in human digit ratios.</p>","PeriodicalId":85633,"journal":{"name":"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology","volume":"286 2","pages":"955-61"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ar.a.20226","citationCount":"35","resultStr":"{\"title\":\"Sexual dimorphism in metapodial and phalanges length ratios in the wood mouse.\",\"authors\":\"Barbara Leoni,&nbsp;Luca Canova,&nbsp;Nicola Saino\",\"doi\":\"10.1002/ar.a.20226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Relative length of metapodials and digits is sexually dimorphic in most primates and one rodent and one bird species studied so far. Recently, interest in digit ratios has increased because of their correlation with diverse physiological, psychological, and performance traits in humans. These correlations may reflect the effect of androgens during early ontogeny on digit development and their long-term organizational effects on extragenital organs. Inter- and intrasexual variation in digit ratios may be ultimately controlled by modulation of the expression of Hoxa and Hoxd genes. Since Hox genes are conserved in vertebrates, similar patterns of sex-related variation in length ratios may be expected across taxa. In fact, sexual dimorphism in length ratios has been documented for metapodials or digit bones in nonhuman vertebrates, but the specific pattern of sex-related variation varies considerably. However, no study has investigated sexual dimorphism in length ratios between all ray segments (metapodials plus phalanges) using osteometrical measures. In an outbred wild population of wood mice (Apodemus sylvaticus), we found extensive sex-related variation in ratios between osteometrical length of the phalanges, but not metatarsals, similar to that recorded on undissected digits of humans and laboratory mice. Most sexually dimorphic ratios involved the second digit. We found very weak evidence for directional asymmetry in length ratios. The present study shows that sex-related variation in length ratios between digit segments observed in mammals may actually depend on relative bone length. Hence, other species may be used to investigate the causal and semeiotic implications of variation in human digit ratios.</p>\",\"PeriodicalId\":85633,\"journal\":{\"name\":\"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology\",\"volume\":\"286 2\",\"pages\":\"955-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/ar.a.20226\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ar.a.20226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.a.20226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

到目前为止,在大多数灵长类动物、一种啮齿动物和一种鸟类中,跖骨和趾的相对长度是两性二态的。最近,人们对手指比例的兴趣越来越大,因为它们与人类的各种生理、心理和表现特征有关。这些相关性可能反映了雄激素在个体发育早期对手指发育的影响及其对生殖器外器官的长期组织影响。趾比的雌雄间和雌雄内变异可能最终通过调节Hoxa和Hoxd基因的表达来控制。由于Hox基因在脊椎动物中是保守的,因此在不同的分类群中,长度比的性别相关变异模式可能相似。事实上,在非人类脊椎动物的跖骨或指骨中,长度比例的性别二态性已经被记录下来,但性别相关变异的具体模式差异很大。然而,还没有研究使用骨测量法调查所有射线节段(跖骨加指骨)长度比的两性二态性。在一个远交种的野生木鼠种群(Apodemus sylvaticus)中,我们发现了指骨(而非跖骨)长度比例的广泛性别相关差异,类似于在未解剖的人类和实验室小鼠的手指上记录的差异。大多数两性二态比涉及第二个手指。我们在长度比中发现了非常微弱的方向不对称的证据。目前的研究表明,在哺乳动物中观察到的趾节长度比率的性别相关变化实际上可能取决于相对骨长。因此,其他物种可以用来研究人类手指比例变化的因果关系和符号学含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sexual dimorphism in metapodial and phalanges length ratios in the wood mouse.

Relative length of metapodials and digits is sexually dimorphic in most primates and one rodent and one bird species studied so far. Recently, interest in digit ratios has increased because of their correlation with diverse physiological, psychological, and performance traits in humans. These correlations may reflect the effect of androgens during early ontogeny on digit development and their long-term organizational effects on extragenital organs. Inter- and intrasexual variation in digit ratios may be ultimately controlled by modulation of the expression of Hoxa and Hoxd genes. Since Hox genes are conserved in vertebrates, similar patterns of sex-related variation in length ratios may be expected across taxa. In fact, sexual dimorphism in length ratios has been documented for metapodials or digit bones in nonhuman vertebrates, but the specific pattern of sex-related variation varies considerably. However, no study has investigated sexual dimorphism in length ratios between all ray segments (metapodials plus phalanges) using osteometrical measures. In an outbred wild population of wood mice (Apodemus sylvaticus), we found extensive sex-related variation in ratios between osteometrical length of the phalanges, but not metatarsals, similar to that recorded on undissected digits of humans and laboratory mice. Most sexually dimorphic ratios involved the second digit. We found very weak evidence for directional asymmetry in length ratios. The present study shows that sex-related variation in length ratios between digit segments observed in mammals may actually depend on relative bone length. Hence, other species may be used to investigate the causal and semeiotic implications of variation in human digit ratios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The submicroscopic morphology of protoplasm. 1956. Cortical complexity in cetacean brains. Nature's experiments in brain diversity. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Aberrant retinal projections in congenitally deaf mice: how are phenotypic characteristics specified in development and evolution?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1