Jacob H Theil, Jennifer L Johns, Poyin Chen, David M Theil, Megan A Albertelli
{"title":"颅内植入猕猴(Macaca mulatta)的血液学和培养评估。","authors":"Jacob H Theil, Jennifer L Johns, Poyin Chen, David M Theil, Megan A Albertelli","doi":"10.30802/AALAS-CM-20-000084","DOIUrl":null,"url":null,"abstract":"<p><p>The use of percutaneous cranial implants in rhesus macaques (<i>Macaca mulatta</i>) has long been a valuable tool for neuroscience research. However, when treating and assessing these animals, veterinarians are required to make assumptions about diagnostic results due to a lack of research into how these implants affect physiology. Microbial cultures of cranial implant sites show an abundance of colonizing bacteria, but whether these microbes affect animal health and wellbeing is poorly understood. In addition, microbial antibiotic resistance can present significant health concerns for both the animals and the researchers. To help elucidate the relationship between percutaneous cranial implants and blood parameters, complete blood cell counts and serum chemistry results were assessed on 57 nonhuman primates at our institution from September 2001 to March 2017. Generalized estimating equations were used to compare the results before and after an animal's first implant surgery. This modelling showed that cranial implants were a significant predictor of alterations in the number of neutrophils, lymphocytes, and red blood cells, and in the concentration of hemoglobin, alkaline phosphatase, creatinine, calcium, phos- phorus, total protein, albumin, and globulin. Anaerobic and aerobic bacterial cultures were performed to identify bacteria associated with cranial implants. <i>Staphylococcus spp., Streptococcus spp.,</i> and <i>Corynebacterium spp.</i> comprised the majority of the aerobic bacterial isolates, while <i>Fusobacterium spp.</i>, <i>Peptostreptococcus spp.</i> and <i>Bacterioides fragilis</i> comprised the majority of anaerobic bacterial isolates. Using a <i>Pearson r</i> correlation for statistical analysis, we assessed whether any of these bacterial isolates developed antibiotic resistances over time. Cefazolin, the most frequently used antibiotic in monkeys in this study, was the only antimicrobial out of 41 agents tested to which bacteria developed resistance over time. These results indicate that percutaneous implants are associated with a generalized inflammatory state, multiple bacterial species are present at the implant site, and these bacteria may contribute to the inflammatory response.</p>","PeriodicalId":10659,"journal":{"name":"Comparative medicine","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063204/pdf/cm2021000166.pdf","citationCount":"0","resultStr":"{\"title\":\"Hematology and Culture Assessment of Cranially Implanted Rhesus Macaques (<i>Macaca mulatta</i>).\",\"authors\":\"Jacob H Theil, Jennifer L Johns, Poyin Chen, David M Theil, Megan A Albertelli\",\"doi\":\"10.30802/AALAS-CM-20-000084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of percutaneous cranial implants in rhesus macaques (<i>Macaca mulatta</i>) has long been a valuable tool for neuroscience research. However, when treating and assessing these animals, veterinarians are required to make assumptions about diagnostic results due to a lack of research into how these implants affect physiology. Microbial cultures of cranial implant sites show an abundance of colonizing bacteria, but whether these microbes affect animal health and wellbeing is poorly understood. In addition, microbial antibiotic resistance can present significant health concerns for both the animals and the researchers. To help elucidate the relationship between percutaneous cranial implants and blood parameters, complete blood cell counts and serum chemistry results were assessed on 57 nonhuman primates at our institution from September 2001 to March 2017. Generalized estimating equations were used to compare the results before and after an animal's first implant surgery. This modelling showed that cranial implants were a significant predictor of alterations in the number of neutrophils, lymphocytes, and red blood cells, and in the concentration of hemoglobin, alkaline phosphatase, creatinine, calcium, phos- phorus, total protein, albumin, and globulin. Anaerobic and aerobic bacterial cultures were performed to identify bacteria associated with cranial implants. <i>Staphylococcus spp., Streptococcus spp.,</i> and <i>Corynebacterium spp.</i> comprised the majority of the aerobic bacterial isolates, while <i>Fusobacterium spp.</i>, <i>Peptostreptococcus spp.</i> and <i>Bacterioides fragilis</i> comprised the majority of anaerobic bacterial isolates. Using a <i>Pearson r</i> correlation for statistical analysis, we assessed whether any of these bacterial isolates developed antibiotic resistances over time. Cefazolin, the most frequently used antibiotic in monkeys in this study, was the only antimicrobial out of 41 agents tested to which bacteria developed resistance over time. These results indicate that percutaneous implants are associated with a generalized inflammatory state, multiple bacterial species are present at the implant site, and these bacteria may contribute to the inflammatory response.</p>\",\"PeriodicalId\":10659,\"journal\":{\"name\":\"Comparative medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063204/pdf/cm2021000166.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.30802/AALAS-CM-20-000084\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30802/AALAS-CM-20-000084","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Hematology and Culture Assessment of Cranially Implanted Rhesus Macaques (Macaca mulatta).
The use of percutaneous cranial implants in rhesus macaques (Macaca mulatta) has long been a valuable tool for neuroscience research. However, when treating and assessing these animals, veterinarians are required to make assumptions about diagnostic results due to a lack of research into how these implants affect physiology. Microbial cultures of cranial implant sites show an abundance of colonizing bacteria, but whether these microbes affect animal health and wellbeing is poorly understood. In addition, microbial antibiotic resistance can present significant health concerns for both the animals and the researchers. To help elucidate the relationship between percutaneous cranial implants and blood parameters, complete blood cell counts and serum chemistry results were assessed on 57 nonhuman primates at our institution from September 2001 to March 2017. Generalized estimating equations were used to compare the results before and after an animal's first implant surgery. This modelling showed that cranial implants were a significant predictor of alterations in the number of neutrophils, lymphocytes, and red blood cells, and in the concentration of hemoglobin, alkaline phosphatase, creatinine, calcium, phos- phorus, total protein, albumin, and globulin. Anaerobic and aerobic bacterial cultures were performed to identify bacteria associated with cranial implants. Staphylococcus spp., Streptococcus spp., and Corynebacterium spp. comprised the majority of the aerobic bacterial isolates, while Fusobacterium spp., Peptostreptococcus spp. and Bacterioides fragilis comprised the majority of anaerobic bacterial isolates. Using a Pearson r correlation for statistical analysis, we assessed whether any of these bacterial isolates developed antibiotic resistances over time. Cefazolin, the most frequently used antibiotic in monkeys in this study, was the only antimicrobial out of 41 agents tested to which bacteria developed resistance over time. These results indicate that percutaneous implants are associated with a generalized inflammatory state, multiple bacterial species are present at the implant site, and these bacteria may contribute to the inflammatory response.
期刊介绍:
Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.