pue负载HA-ADH-PS纳米胶束的制备及性能研究。

IF 1.8 4区 化学 Q3 POLYMER SCIENCE Designed Monomers and Polymers Pub Date : 2021-01-17 DOI:10.1080/15685551.2020.1860481
Huiru Wang, Yuanyuan Li, Yunpeng Min, Hang Zhang, Linkun Hao, Ru Zhang, Yunying Jiang, Yimin Song
{"title":"pue负载HA-ADH-PS纳米胶束的制备及性能研究。","authors":"Huiru Wang,&nbsp;Yuanyuan Li,&nbsp;Yunpeng Min,&nbsp;Hang Zhang,&nbsp;Linkun Hao,&nbsp;Ru Zhang,&nbsp;Yunying Jiang,&nbsp;Yimin Song","doi":"10.1080/15685551.2020.1860481","DOIUrl":null,"url":null,"abstract":"<p><p>Puerarin (Pue) is the most abundant isoflavonoid in kudzu root. It has been widely used as a therapeutic agent for the treatment of cardiovascular diseases. However, poor-bioavailability of puerarin is the main obstacle to its widespread clinical applications. In this paper, HA-ADH-PS nanomicelles were prepared by chemical modification, noncovalent modification and etc, and characterized by means of FT-IR, ultraviolet (UV) and thermogravimetric analysis (TG). The encapsulation efficiency and drug loading of Pue-loaded HA-ADH-PS nanomicelles were 45.1% and 19.89% by UV, respectively. It could be observed from the transmission electron microscopy (TEM) images that HA-ADH-PS micelles appeared obvious spherical structure in the water. The particle size of HA-ADH-PS nanomicelles and Pue-loaded HA-ADH-PS nanomicelles were about 136.8 nm and 119.5 nm with a PDI of 0.237 and 0.272, respectively. The fluorescence probe method was used to characterize the critical micelle concentration, the critical micelle concentration (CMC) value of the nanomicells was 0.002 g/L and the results met the requirements and ensured the stability of micelles after dilution. DPPH assay suggested that Pue-loaded HA-ADH-PS nanomicelles had an obvious radical scavenging effect in vitro. MTT test showed that Pue-loaded HA-ADH-PS nanomicelles was non-toxic and had good biocompatibility. Thus, Pue-loaded HA-ADH-PS nanomicelles could be used as a potential drug carrier for puerarin.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"24 1","pages":"1-12"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15685551.2020.1860481","citationCount":"3","resultStr":"{\"title\":\"Preparation and properties of Pue-loaded HA-ADH-PS nanomicelles.\",\"authors\":\"Huiru Wang,&nbsp;Yuanyuan Li,&nbsp;Yunpeng Min,&nbsp;Hang Zhang,&nbsp;Linkun Hao,&nbsp;Ru Zhang,&nbsp;Yunying Jiang,&nbsp;Yimin Song\",\"doi\":\"10.1080/15685551.2020.1860481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Puerarin (Pue) is the most abundant isoflavonoid in kudzu root. It has been widely used as a therapeutic agent for the treatment of cardiovascular diseases. However, poor-bioavailability of puerarin is the main obstacle to its widespread clinical applications. In this paper, HA-ADH-PS nanomicelles were prepared by chemical modification, noncovalent modification and etc, and characterized by means of FT-IR, ultraviolet (UV) and thermogravimetric analysis (TG). The encapsulation efficiency and drug loading of Pue-loaded HA-ADH-PS nanomicelles were 45.1% and 19.89% by UV, respectively. It could be observed from the transmission electron microscopy (TEM) images that HA-ADH-PS micelles appeared obvious spherical structure in the water. The particle size of HA-ADH-PS nanomicelles and Pue-loaded HA-ADH-PS nanomicelles were about 136.8 nm and 119.5 nm with a PDI of 0.237 and 0.272, respectively. The fluorescence probe method was used to characterize the critical micelle concentration, the critical micelle concentration (CMC) value of the nanomicells was 0.002 g/L and the results met the requirements and ensured the stability of micelles after dilution. DPPH assay suggested that Pue-loaded HA-ADH-PS nanomicelles had an obvious radical scavenging effect in vitro. MTT test showed that Pue-loaded HA-ADH-PS nanomicelles was non-toxic and had good biocompatibility. Thus, Pue-loaded HA-ADH-PS nanomicelles could be used as a potential drug carrier for puerarin.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":\"24 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15685551.2020.1860481\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2020.1860481\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2020.1860481","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 3

摘要

葛根素(Pue)是葛根中含量最多的异黄酮。它已被广泛用作治疗心血管疾病的治疗剂。然而,葛根素的生物利用度差是其广泛应用于临床的主要障碍。本文通过化学改性、非共价改性等方法制备了HA-ADH-PS纳米胶束,并用红外光谱(FT-IR)、紫外(UV)和热重分析(TG)对其进行了表征。紫外检测结果表明,pue负载的HA-ADH-PS纳米胶束包封率和载药量分别为45.1%和19.89%。透射电镜(TEM)观察到HA-ADH-PS胶束在水中呈现明显的球形结构。HA-ADH-PS和pue负载的HA-ADH-PS纳米胶束粒径分别为136.8 nm和119.5 nm, PDI分别为0.237和0.272。采用荧光探针法对临界胶束浓度进行表征,纳米细胞的临界胶束浓度(CMC)值为0.002 g/L,结果满足要求,并保证了稀释后胶束的稳定性。DPPH实验表明,负载pue的HA-ADH-PS纳米胶束具有明显的体外自由基清除作用。MTT试验表明,负载pue的HA-ADH-PS纳米胶束无毒且具有良好的生物相容性。因此,pue负载HA-ADH-PS纳米胶束可作为葛根素的潜在药物载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and properties of Pue-loaded HA-ADH-PS nanomicelles.

Puerarin (Pue) is the most abundant isoflavonoid in kudzu root. It has been widely used as a therapeutic agent for the treatment of cardiovascular diseases. However, poor-bioavailability of puerarin is the main obstacle to its widespread clinical applications. In this paper, HA-ADH-PS nanomicelles were prepared by chemical modification, noncovalent modification and etc, and characterized by means of FT-IR, ultraviolet (UV) and thermogravimetric analysis (TG). The encapsulation efficiency and drug loading of Pue-loaded HA-ADH-PS nanomicelles were 45.1% and 19.89% by UV, respectively. It could be observed from the transmission electron microscopy (TEM) images that HA-ADH-PS micelles appeared obvious spherical structure in the water. The particle size of HA-ADH-PS nanomicelles and Pue-loaded HA-ADH-PS nanomicelles were about 136.8 nm and 119.5 nm with a PDI of 0.237 and 0.272, respectively. The fluorescence probe method was used to characterize the critical micelle concentration, the critical micelle concentration (CMC) value of the nanomicells was 0.002 g/L and the results met the requirements and ensured the stability of micelles after dilution. DPPH assay suggested that Pue-loaded HA-ADH-PS nanomicelles had an obvious radical scavenging effect in vitro. MTT test showed that Pue-loaded HA-ADH-PS nanomicelles was non-toxic and had good biocompatibility. Thus, Pue-loaded HA-ADH-PS nanomicelles could be used as a potential drug carrier for puerarin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designed Monomers and Polymers
Designed Monomers and Polymers 化学-高分子科学
CiteScore
3.30
自引率
0.00%
发文量
28
审稿时长
2.1 months
期刊介绍: Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work. The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications. DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to: -macromolecular science, initiators, macroinitiators for macromolecular design -kinetics, mechanism and modelling aspects of polymerization -new methods of synthesis of known monomers -new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization) -functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers -new polymeric materials with biomedical applications
期刊最新文献
Synthesis and properties of bio-based semi-aromatic heat-resistant copolymer polyamide 5T-co-6T. Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters. The effect of polycarboxylate superplasticizer on the strength and hydration performance of alkali slag building materials. Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg+2 sensor. Cyclodextrin-grafted redox-responsive hydrogel mediated by disulfide bridges for regulated drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1