青光眼和als相关的OPTN突变体通过Tbk1活性、自噬和内质网应激诱导神经元细胞死亡。

IF 5.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY FEBS Journal Pub Date : 2021-08-01 Epub Date: 2021-02-19 DOI:10.1111/febs.15752
Swetha Medchalmi, Priyanka Tare, Zuberwasim Sayyad, Ghanshyam Swarup
{"title":"青光眼和als相关的OPTN突变体通过Tbk1活性、自噬和内质网应激诱导神经元细胞死亡。","authors":"Swetha Medchalmi,&nbsp;Priyanka Tare,&nbsp;Zuberwasim Sayyad,&nbsp;Ghanshyam Swarup","doi":"10.1111/febs.15752","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in OPTN are associated with glaucoma, an eye disease, and also with amyotrophic lateral sclerosis (ALS), a motor neuron disease. A 2-bp insertion in OPTN (691_692insAG or 2bpIns-OPTN) is associated with both glaucoma and ALS. This mutation results in frame shift after 127 amino acids, giving rise to a protein with C-terminal aberrant sequence. We have explored the mechanism of induction of cell death by this mutant in a motor neuron cell line, NSC-34, and also in a retinal cell line, 661W. Compared to wild-type OPTN, this mutant induced more cell death in NSC-34 and 661W cells. This mutant localizes predominantly in the nucleus whereas normal OPTN localizes in the cytoplasm. Deletion analysis of 2bpIns-OPTN showed that the aberrant sequence was not essential for cell death induction. This mutant interacts with TANK-binding kinase 1 (Tbk1) but not with OPTN and activates Tbk1. This mutant induced ER stress in NSC-34 cells as seen by induction of C/EBP homologous protein (CHOP) and some other genes. Induction of CHOP, autophagosomal protein LC3-II and cell death by this mutant were abrogated by Tbk1 knockdown and also by 4-phenylbutyric acid, that inhibits ER stress. Induction of CHOP and cell death by 2bpIns-OPTN was autophagy dependent as shown by the effect of Atg5 knockdown. This mutant caused increased formation of LC3-positive aggregates. Treatment of cells with autophagy inducer rapamycin reduced LC3-positive aggregates, CHOP and cell death induced by 2bpIns-OPTN. These results suggest that constitutive activation of Tbk1 by 2bpIns-OPTN leads to impaired autophagy that results in ER stress and cell death.</p>","PeriodicalId":12261,"journal":{"name":"FEBS Journal","volume":"288 15","pages":"4576-4595"},"PeriodicalIF":5.5000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/febs.15752","citationCount":"18","resultStr":"{\"title\":\"A glaucoma- and ALS-associated mutant of OPTN induces neuronal cell death dependent on Tbk1 activity, autophagy and ER stress.\",\"authors\":\"Swetha Medchalmi,&nbsp;Priyanka Tare,&nbsp;Zuberwasim Sayyad,&nbsp;Ghanshyam Swarup\",\"doi\":\"10.1111/febs.15752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations in OPTN are associated with glaucoma, an eye disease, and also with amyotrophic lateral sclerosis (ALS), a motor neuron disease. A 2-bp insertion in OPTN (691_692insAG or 2bpIns-OPTN) is associated with both glaucoma and ALS. This mutation results in frame shift after 127 amino acids, giving rise to a protein with C-terminal aberrant sequence. We have explored the mechanism of induction of cell death by this mutant in a motor neuron cell line, NSC-34, and also in a retinal cell line, 661W. Compared to wild-type OPTN, this mutant induced more cell death in NSC-34 and 661W cells. This mutant localizes predominantly in the nucleus whereas normal OPTN localizes in the cytoplasm. Deletion analysis of 2bpIns-OPTN showed that the aberrant sequence was not essential for cell death induction. This mutant interacts with TANK-binding kinase 1 (Tbk1) but not with OPTN and activates Tbk1. This mutant induced ER stress in NSC-34 cells as seen by induction of C/EBP homologous protein (CHOP) and some other genes. Induction of CHOP, autophagosomal protein LC3-II and cell death by this mutant were abrogated by Tbk1 knockdown and also by 4-phenylbutyric acid, that inhibits ER stress. Induction of CHOP and cell death by 2bpIns-OPTN was autophagy dependent as shown by the effect of Atg5 knockdown. This mutant caused increased formation of LC3-positive aggregates. Treatment of cells with autophagy inducer rapamycin reduced LC3-positive aggregates, CHOP and cell death induced by 2bpIns-OPTN. These results suggest that constitutive activation of Tbk1 by 2bpIns-OPTN leads to impaired autophagy that results in ER stress and cell death.</p>\",\"PeriodicalId\":12261,\"journal\":{\"name\":\"FEBS Journal\",\"volume\":\"288 15\",\"pages\":\"4576-4595\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/febs.15752\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.15752\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/febs.15752","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 18

摘要

OPTN突变与青光眼(一种眼病)和肌萎缩性侧索硬化症(一种运动神经元疾病)有关。OPTN中2bp的插入(691_692insAG或2bpIns-OPTN)与青光眼和ALS均相关。该突变导致127个氨基酸后的框架移位,产生具有c端异常序列的蛋白。我们已经在运动神经元细胞系NSC-34和视网膜细胞系661W中探索了这种突变诱导细胞死亡的机制。与野生型OPTN相比,该突变体在NSC-34和661W细胞中诱导更多的细胞死亡。这种突变体主要定位于细胞核,而正常的OPTN定位于细胞质。对2bpIns-OPTN的缺失分析表明,该异常序列不是诱导细胞死亡所必需的。该突变体与tank结合激酶1 (Tbk1)相互作用,但不与OPTN相互作用,并激活Tbk1。该突变体通过诱导C/EBP同源蛋白(CHOP)和其他一些基因诱导NSC-34细胞内质网应激。该突变体诱导CHOP、自噬体蛋白LC3-II和细胞死亡可通过Tbk1敲除和抑制内质酸应激的4-苯基丁酸来消除。Atg5敲低的作用表明,2bpIns-OPTN诱导CHOP和细胞死亡依赖于自噬。这种突变导致lc3阳性聚集体的形成增加。用自噬诱导剂雷帕霉素处理细胞可降低lc3阳性聚集物、CHOP和2bpIns-OPTN诱导的细胞死亡。这些结果表明,2bpIns-OPTN对Tbk1的组成性激活可导致自噬受损,从而导致内质网应激和细胞死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A glaucoma- and ALS-associated mutant of OPTN induces neuronal cell death dependent on Tbk1 activity, autophagy and ER stress.

Mutations in OPTN are associated with glaucoma, an eye disease, and also with amyotrophic lateral sclerosis (ALS), a motor neuron disease. A 2-bp insertion in OPTN (691_692insAG or 2bpIns-OPTN) is associated with both glaucoma and ALS. This mutation results in frame shift after 127 amino acids, giving rise to a protein with C-terminal aberrant sequence. We have explored the mechanism of induction of cell death by this mutant in a motor neuron cell line, NSC-34, and also in a retinal cell line, 661W. Compared to wild-type OPTN, this mutant induced more cell death in NSC-34 and 661W cells. This mutant localizes predominantly in the nucleus whereas normal OPTN localizes in the cytoplasm. Deletion analysis of 2bpIns-OPTN showed that the aberrant sequence was not essential for cell death induction. This mutant interacts with TANK-binding kinase 1 (Tbk1) but not with OPTN and activates Tbk1. This mutant induced ER stress in NSC-34 cells as seen by induction of C/EBP homologous protein (CHOP) and some other genes. Induction of CHOP, autophagosomal protein LC3-II and cell death by this mutant were abrogated by Tbk1 knockdown and also by 4-phenylbutyric acid, that inhibits ER stress. Induction of CHOP and cell death by 2bpIns-OPTN was autophagy dependent as shown by the effect of Atg5 knockdown. This mutant caused increased formation of LC3-positive aggregates. Treatment of cells with autophagy inducer rapamycin reduced LC3-positive aggregates, CHOP and cell death induced by 2bpIns-OPTN. These results suggest that constitutive activation of Tbk1 by 2bpIns-OPTN leads to impaired autophagy that results in ER stress and cell death.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEBS Journal
FEBS Journal 生物-生化与分子生物学
CiteScore
11.70
自引率
1.90%
发文量
375
审稿时长
1 months
期刊介绍: The FEBS Journal is an international journal devoted to the rapid publication of full-length papers covering a wide range of topics in any area of the molecular life sciences. The criteria for acceptance are originality and high quality research, which will provide novel perspectives in a specific area of research, and will be of interest to our broad readership. The journal does not accept papers that describe the expression of specific genes and proteins or test the effect of a drug or reagent, without presenting any biological significance. Papers describing bioinformatics, modelling or structural studies of specific systems or molecules should include experimental data.
期刊最新文献
Autophagy and tumorigenesis. Migrasome biogenesis and functions. Nuclear speckles: dynamic hubs of gene expression regulation. Molecular mechanisms and biological roles of GOMED. Autophagy in the retinal pigment epithelium: a new vision and future challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1