{"title":"脊髓损伤后的慢性疼痛:目前研究细胞和分子机制的方法。","authors":"Jessica R Yasko, Richard E Mains","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic spinal cord injury (SCI) has devastating implications for patients, including a high prevalence of chronic pain. Despite advancements in our understanding of the mechanisms involved post-SCI, there are no effective treatments for chronic pain following injury. The development of new treatment interventions for pain is needed, but this requires improved models to assess injury-related cellular, neurophysiological and molecular changes in the spinal cord. Here, we will discuss recent animal models for SCI, molecular screening for altered patterns of gene expression, and the importance of injury severity and timing after SCI.</p>","PeriodicalId":23241,"journal":{"name":"Trends in cell & molecular biology","volume":"13 ","pages":"67-84"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869846/pdf/nihms-1656493.pdf","citationCount":"0","resultStr":"{\"title\":\"Chronic pain following spinal cord injury: Current approaches to cellular and molecular mechanisms.\",\"authors\":\"Jessica R Yasko, Richard E Mains\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic spinal cord injury (SCI) has devastating implications for patients, including a high prevalence of chronic pain. Despite advancements in our understanding of the mechanisms involved post-SCI, there are no effective treatments for chronic pain following injury. The development of new treatment interventions for pain is needed, but this requires improved models to assess injury-related cellular, neurophysiological and molecular changes in the spinal cord. Here, we will discuss recent animal models for SCI, molecular screening for altered patterns of gene expression, and the importance of injury severity and timing after SCI.</p>\",\"PeriodicalId\":23241,\"journal\":{\"name\":\"Trends in cell & molecular biology\",\"volume\":\"13 \",\"pages\":\"67-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869846/pdf/nihms-1656493.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in cell & molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in cell & molecular biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chronic pain following spinal cord injury: Current approaches to cellular and molecular mechanisms.
Traumatic spinal cord injury (SCI) has devastating implications for patients, including a high prevalence of chronic pain. Despite advancements in our understanding of the mechanisms involved post-SCI, there are no effective treatments for chronic pain following injury. The development of new treatment interventions for pain is needed, but this requires improved models to assess injury-related cellular, neurophysiological and molecular changes in the spinal cord. Here, we will discuss recent animal models for SCI, molecular screening for altered patterns of gene expression, and the importance of injury severity and timing after SCI.